Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mathematics (9-1) - iGCSE

Similar presentations


Presentation on theme: "Mathematics (9-1) - iGCSE"— Presentation transcript:

1 Mathematics (9-1) - iGCSE
Year 09 Unit 07 – Answers

2 7 - Prior knowledge check
Page 651 400 a b c. 5.0 a b Teaspoon 5ml, drink can 300ml, bucket 5 litres, juice carton 1 litre. a. 520cm b. 240mm c. 1000mm d. 3410m e. 327ml f. 2,4 litres

3 7 - Prior knowledge check
Page 651 a. 18 b c. 480 d. 2 a. x = 1 c y b. x = a bz c. x = 2𝑚 y Suitable circle with correct centre, radius and diameter labelled.

4 7 - Prior knowledge check
Page 651 a b. 108cm2

5 7 - Prior knowledge check
Page 651 a b. c. 48cm3

6 7 - Prior knowledge check
Page 651 40cm2 370cm3 Students' own answers. The boxes will fit exactly into a cuboid box with dimensions 9cm x 12cm x 12cm.

7 7.1 – Perimeter and Area a. 12cm2,16cm b. 30cm2, 30cm c. 96cm2, 44cm
Page 651 a. 12cm2,16cm b. 30cm2, 30cm c. 96cm2, 44cm a. 1 = 4 b. 1 = 12 c. z = 5 a. Area = 46.5 m2, perimeter = 29m b. 1548mm2 c mm2 a. 60cm2 b. 30cm c. 26.6m2 d cm2 Area = 276cm2, perimeter = 72cm

8 7.1 – Perimeter and Area Page 651 £34.93 4350 m2 a. 96 = (9 + 15)h b. 96 = 12h c. h = 8cm 4cm a. a = 6cm b. b = 2.8m (1 d.p.) 100cm

9 7.2 – Units and Accuracy a. 3.6 b. 320 c. 8.50 d. 15.7
Page 651 a b c d. 15.7 a. i. 2.5 kg ii kg iii kg b. i. 2m ii. 38m iii. 42m a. 1 cm = 10 mm, so they have same side length 1cm2 and 100mm2 1 cm2 = 100 mm2 a. Suitable sketch of the squares 1m2 = 10000cm2 Divide by 10000

10 7.2 – Units and Accuracy Page 651 a. 2.5cm2 b cm2 c. 0.7m2 d. 340mm2 e. 88,500cm2 f cm2 g. 370,000mm2 h. 2.8m a. 0.6m2 b. 544 mm2 c. 468mm2 d cm2 24.2 ha 1,600,000 a. 33 mm, 27 m b. 27mm ≤ length ≤ 33mm

11 7.2 – Units and Accuracy Page 651 19g ≤ mass ≤ 21g a. i. 35.5cm ii cm a. 17.5m ≤ x ≤ 18.5 m b kg ≤ x ≤ kg c m ≤ x ≤ 1.45 m d km ≤ x ≤ km

12 7.2 – Units and Accuracy Page 651 a. i. 7.5cm ii. 8.5cm b. i. 5.25kg ii. 5.35kg c. i m ii m d. i litres ii litres e. i. 4500m ii. 5500m f. i. 31.5mm ii. 32.5mm g. i kg ii kg

13 7.2 – Units and Accuracy a. 14.5cm, 15.5cm, 27.5cm, 28.5cm
Page 651 a. 14.5cm, 15.5cm, 27.5cm, 28.5cm Lower bound 84cm, upper bound 88cm Upper bound m2, lower bound m2 a. Height 6.15cm, 6.25cm; area 23.5cm2, 24.5cm2 i ii (2 d.p.) 3.98cm (2 d.p.)

14 7.3 – Prisms 72cm3 a. b = 8 b. h = 4 a. Students’ own sketch
Page 651 72cm3 a. b = 8 b. h = 4 a. Students’ own sketch c. Areas are 20cm2, 28cm2 and 35cm2.The identical pairs are (top,bottom) (front,back) and (left side,right side) Surface area is 166cm2 72cm

15 7.3 – Prisms Page 651 a. Yes, because it has the same cross section all along its length, 12 cm2 72cm3, same value as for volume calculated in Q1. a. 80 cm3 b. 204 cm3 a. 4cm b. 108cm2 4cm

16 7.3 – Prisms a. Suitable sketch of cube 1 cm3 = 1,000mm3
Page 651 a. Suitable sketch of cube 1 cm3 = 1,000mm3 Divide by 1,000 a. 1m3 and 1,000,000cm3 Multiply by 1,000,000 a. 4,500,000cm3 b. 52,000mm3 9.5 m3 d cm3 5.2 litres f cm3 75cm3 h litres a m2 b. 3

17 7.3 – Prisms Page 651 9.2cm a m3 Estimated volume of leaf mould in wood is x 0.2 = 4000 m = 80,000,12 x 80,000 = 960,000 worms Volume = x 4x x 2x x 5x = 20x3 Upper bound: 5.5 x 3.5 x 8.5 = cm3, Lower bound: 4.5 x 2.5 x 7.5 = cm3

18 7.4 – Circles a. r = 5 b. r = ± 5 a. x = y m b. x = ±t c. x = ± 𝑝
Page 651 a. r = 5 b. r = ± 5 a. x = y m b. x = ±t c. x = ± 𝑝 a. All ratios are 3.14 to 2 d.p. b a cm b m c mm a cm2 b. 4.5 m2 c m2 5 boxes a mm b mm2 Circumference = 201cm, = 497

19 7.4 – Circles Page 652 a. 10πcm, 25πcm2 b. 14πcm, 49πcm2 c. 20πcm, 100πcm2 d. 24πcm, 144πcm2 a. i. area 36πcm, circumference 12πcm ii. 110cm2 (2 s.f.), 38cm The answers in terms of π because they have not been rounded a. 104 = πd b. d = 33.1cm 3.8 cm (1 d.p.)

20 7.4 – Circles a. 12.87 m b. 28.3 cm a. A π = r2 b. A π = r
Page 652 a m b cm a. A π = r2 b. A π = r X: 3.6cm Y: 2.8 cm Z: 4.7 cm 8 x 66 circles = 528 Total area of circles = 528 x 9π = 14,929cm2 (to nearest cm2) Area thrown away = 20,000 – 14,929 = 5071cm2 Percentage thrown away = = 0.25 or 25%

21 7.5 – Sector of Circles a. 16πcm, 64πcm2 b. 50.3 cm, 201 cm2
Page 652 a. 16πcm, 64πcm2 b cm, 201 cm2 a. 4π b. 2π c. 3π + 7 a. i. 18πcm2 ii cm2 b. i. 25πcm2 ii cm2 a. i. (3π + 6) cm ii cm b. i. (5π + 10)cm ii cm a. (16π +16)cm b cm a. 4.4m2 b. 8.8m 21.5 cm2 a cm b. 3.1cm 58.9 cm

22 7.5 – Sector of Circles Arc length = 7.85cm, perimeter = 37.9cm
Page 652 Arc length = 7.85cm, perimeter = 37.9cm a cm, 85.5cm2 b cm2 ≤ area < 98.2 cm2 a. 10 = x 360 x π x 32 b. 127° (to the nearest degree) 74° 8.56 m 5.0 cm (1 d.p.) (16π - 32) cm2

23 7.6 – Cylinders & Spheres Students’ sketches
Page 652 Students’ sketches a. ±6 b c. ±1.6 d. 2.2 a. πr2 b. V = πr2h a. 197cm3 b. 167,283.5 mm3 0.267 m3 3.2 cm a cm2 b. 16,889.2mm2 c. 41.3m2 26 mm 300cm3

24 7.6 – Cylinders & Spheres Page 652 a. SA = 324πmm2, V = 972πmm3 b. SA = 100πcm2, V = 500π 3 cm3 191 mm3 ≤ volume ≤ 348mm3 a. Total volume = π = 1140mm3 (3 s.f.) b. Total SA = 208π = 653mm2 17mm 6.31m 3.1cm

25 7.7 – Spheres & Composite Solids
Page 652 a. 20 cm2 b. 21cm2 9.4 cm a. Net of square-based pyramid, square 4cm side, height of each triangle 6cm Triangular face 12cm2, square 16cm2 64cm2 213 cm3 a. i. = 8.7 cm (1 d.p.) b. Total volume = 950 cm3

26 7.7 – Spheres & Composite Solids
Page 652 a. 96πcm3 b. 302cm3 a. 257πcm2 b. 657πcm2 c. 907πcm2 l = = 9.85cm (2 d.p.), area = cm2 Volume = 63,363mm3 (to nearest mm3) Surface area = 9,694 mm2 (to nearest mm2) 10.6cm

27 7.7 – Spheres & Composite Solids
Page 652 Radius of sphere = cm, height of cone = 20.9cm Volume of whole cone = 144π, volume of smaller cone = π Volume of frustum = π a. 10πx3 b. 20πx2 c. 10πx3 + 20πx2 = 10πx2(x + 2) 51π = 160cm3 (3 s.f.)

28 7 – Problem-Solving Page 652 6.6cm 8.6cm 72.2% £935.03 864 cm3

29 7 – Problem-Solving Page 652 a. 9.5 cm3 b. 25cm 7cm a. 50.3cm b. 64π = 201.1cm2 25.7cm a. 15,7cm2 b. 5.2cm a. 40,000cm2 b. 0.56m2 c. 9.5m3 d. 3000ml – 3000cm3

30 7 – Problem-Solving 9.5 cm3 ≤ volume < 105cm3
Page 652 9.5 cm3 ≤ volume < 105cm3 a m ≤ 36m < 36.5m b. 9.15cm ≤ 9.2cm < 9.25cm c km ≤ 23.6km < 23.65km 36cm3 492.9 cm2 36πcm3 301.6cm3 Students‘ own answers

31 7 – Strengthen 2D Shapes a. 2cm b. 10.3cm
Page 652 2D Shapes a. 2cm b. 10.3cm a. 55 = 1 2 (7 + b) x 10 b. 55 = b c. b = 4cm a. i. 4πcm ii. 12.6cm b. i. 12πcm ii. 37.7cm a. 2πr = 19.5cm, πr2 = 342 b. A = πr2 c. C = 2πr a. i. 4πcm2 ii. 12.6cm2 b. i. 36πcm2 ii cm2

32 7 – Strengthen Page 652 a cm2 b. 77.0cm2 c. 44.0cm d. 50.3cm e. 14.0cm f cm a b c = 5 8 a b cm2 c. 25.1cm2 d. 50.3cm e. 6.3cm f. 16cm g. 22.3cm

33 7 – Strengthen Accuracy and Measures
Page 652 Accuracy and Measures a. 10,000cm2, 20,000cm2 b. cm2 10,000 cm2 x10, ÷10,000 m m2 a. 1,000,000cm3, 2,000,000cm2 b. cm2 10, cm2 x1,000, ÷1,000, m m2 a. 2.5 b and c ≤ 25 ≤ 27.5 a ≤ l < 23.5 b ≤ l ≤ 32.5

34 7 – Strengthen Page 653 3D Solids a. 60cm3 b. 63cm3 c. 240π = 754cm3 a. Students’ sketches b. i cm2 ii. 37.7cm iii cm2 iv cm2

35 7 – Strengthen Page 653 a. Volume = 340 cm3 = 4 3 πr3, surface area = 746 cm2 = 4πr2 b. Surface area = 4πr2 c. Volume = 4 3 πr2 d. i cm ii cm3 a. 4cm b. 5cm c cm3 d. 75.4cm2

36 7 – Extend Page 653 a cm2 a. 50xy b. 500xyz a. Split the garden with a line parallel to the wall to form a rectangle and a right- angled triangle. The hypotenuse of the triangle is 5 m. The right hand side of the triangle is = 3m. These are two sides of a Pythagorean triple, so the third side is 4m. This side is the same length as the wall, so the wall is 4 m long, Area of lawn = 38 m2; 2 bottles 201m

37 7 – Extend Page 653 Capacity of tank = 942,477.8 cm3 = 942,477.8 ml Time to fill = 3,142 seconds = 52 minutes a. Shade rectangle a by x b. Shade rectangle a by x and rectangle b by x c. Shade one of the end triangles a. 3.5cm b. 28 cm2 Area of trapezium = (a + b)h So 144 = ((x - 6) + (x + 2)) x 3x = (2x - 4) x 3x 144 = (x - 2) x 3x Therefore 3x2 - 6x = 144

38 7 – Extend Page 653 6 litres 3x a b c d a b c 3.85 x 1013m2

39 7 – Unit Test Page 653 Sample student answer The question asks for the answer correct to 3 s.f. The student has rounded to 4 s.f. Although all the maths is correct they must make sure they write the answer in the requested way


Download ppt "Mathematics (9-1) - iGCSE"

Similar presentations


Ads by Google