Download presentation
Presentation is loading. Please wait.
Published byDonát Gáspár Modified over 5 years ago
1
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
A. Pierzga1, K. Komędera1, A. Błachowski1, K. Ruebenbauer1, K. Z. Takahashi2, and T. J. Sato2 1 Mössbauer Spectroscopy Laboratory, Institute of Physics, Pedagogical University, PL Kraków, ul. Podchorążych 2, Poland 2 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai , Japan
2
________”122” Fe-based Superconducting Family________
AFe2As2 (A = Ca, Sr, Ba, Eu) ______________Parent compound______________ BaFe2As2 TSDW = 136 K _________Superconductors_________ Ba1-xKxFe2As Ba(Fe1-xCox)2As2 BaFe2(As1-xPx)2 hole-doping electron-doping isovalent-substitution x = x = x = 0.31 Tsc = 38 K Tsc = 24 K Tsc = 31 K Ba1-xKxFe2As2 Ba(Fe1-xCox)2As2 K Co P x Rev. Mod. Phys. 87, 855 (2015)
3
Mössbauer Spectroscopy
-ray energy is modulated by the Doppler effect due to the source motion vs. absorber Source (e.g. 57Co/Rh) Absorber (57Fe) Detector 1 mm/s 48 neV 0 = mm/s – v +v
4
Electric Monopole Interaction Isomer Shift S Electron density
Hyperfine Interactions between Nuclei and Electrons Mössbauer Parameters Electric Monopole Interaction Isomer Shift S Electron density S S Electric Quadrupole Interaction Quadrupole Splitting Electric Field Gradient EFG EFG S 1 mm/s 3.5 el./Bohr3 EQ EFG 1 mm/s 5.6 1021 V/m2 Magnetic Dipole Interaction Magnetic Splitting Magnetic hyperfine field B B B -Fe 33 Tesla Fe2O3 52 Tesla BaFe2As2 5.3 Tesla
5
Charge density wave (CDW)
- spatial modulation of the electron charge density Electric field gradient wave (EFGW) - spatial modulation of the electric field gradient Spin density wave (SDW) - spatial modulation of the electron spin density The Mössbauer spectroscopy is sensitive to the spin and charge (electron) distribution around the resonant nucleus via the hyperfine magnetic field, isomer shift and electric quadrupole interaction.
6
CDW , EFGW and SDW as seen by Mössbauer Spectroscopy
Γ – absorber line width 0.7 el./Bohr3 5.6 1021 V/m2 Charge and spin density modulations causes specific broadening of the Mössbauer absorption line. For CDW one can estimate dispersion (around average value) of the electron density – unbroadened line width – calibration constant
7
57Fe Mössbauer spectra of BaFe2As2 parent compound and Ba0. 6K0
57Fe Mössbauer spectra of BaFe2As2 parent compound and Ba0.6K0.4Fe2As2 superconductor SDW 1.7 T 2.5 T 3.2 T 3.7 T 4.0 T 5.3 T Difference in total molar specific heat coefficients between superconductor and parent compound. Inset shows electronic specific heat coefficient of superconductor. 7
8
57Fe Mössbauer spectra of the Ba0.6K0.4Fe2As2 (TSC = 38 K)
across transition to the superconducting state. Difference in total molar specific heat coefficients between superconductor and parent compound. Inset shows electronic specific heat coefficient of superconductor.
9
Ba0.6K0.4Fe2As2 (TSC = 38 K) EFG 1 mm/s 5.6 1021 V/m2
Mössbauer parameters: S – spectrum shift versus α-Fe Δ0 – constant component of quadrupole splitting Γ – absorber line width Shape of EFGW electric field gradient wave (d electrons density variation) Relative recoilless fraction f/f0 (normalized to f0 at 4.2 K) Dispersion of CDW charge density wave (s electrons density variation) EFG 1 mm/s 5.6 1021 V/m2
10
57Fe Mössbauer spectra of SmFeAsO0.91F0.09 (Tsc ≈ 47 K)
across transition to the superconducting state Resistivity Magnetic susceptibility
11
charge density modulation changes during superconducting transition in
Comparison between charge density modulation changes during superconducting transition in Ba0.6K0.4Fe2As2 Tsc = 38 K SmFeAsO0.91F Tsc = 47 K (hole doping) (electron doping) EFGW EFGW CDW CDW K
12
charge density modulation changes during superconducting transition in
Comparison between charge density modulation changes during superconducting transition in Ba0.6K0.4Fe2As2 Tsc = 38 K SmFeAsO0.91F Tsc = 47 K (hole doping) (electron doping) EFGW EFGW CDW CDW 1) Mössbauer spectroscopy sees CDW in Fe-SC. 2) CDW modulation is perturbed at Tsc-onset and returns to the modulation from the normal state below Tsc-offset (=0). 3) Direction of CDW perturbation depends on … type of doping (?) K
13
BaFe2(As1-xPx)2 Our samples: x = 0.10 , 0.33 , 0.53 , 0.70
x = 0 hPn = 1.36Å S. Kasahara et al., NATURE 486, 382 (2012) x = 0.30 hPn = 1.28Å Our samples: x = , , , under-doped superconductors over-doped
14
BaFe2(As1-xPx)2 x = 0 x = 0.10 x = 0.33 x = 0.53 x = 0.70
parent under-doped superconductors over-doped TSDW = 136 K TSDW = 106 K Tsc = 27.6 K Tsc = 13.9 K
15
BaFe2(As1-xPx)2 x = 0.10 TSDW = 106 K
Mössbauer parameters: S spectrum shift Γ line width B magnetic hyperfine field 1.8 T 0.5 T 2.4 T 1.4 T 3.1 T 1.6 T 3.6 T K.Z. Takahashi, D. Okuyama, T.J. Sato, J. Cryst. Growth 446, 39 (2016)
16
BaFe2(As1-xPx)2 x = 0.10 TSDW = 106 K
Mössbauer parameters: S spectrum shift Γ line width B magnetic hyperfine field Nematic phase shows residual magnetic order in tetragonal structure with transition to the paramagnetic phase at about 140 K, so about 30 K higher than SDW order and orthorhombic distortion. 1.8 T 0.5 T 2.4 T 1.4 T 3.1 T 1.6 T 3.6 T K.Z. Takahashi, D. Okuyama, T.J. Sato, J. Cryst. Growth 446, 39 (2016)
17
BaFe2(As1-xPx)2 x = 0.33 Tsc = 27.6 K Mössbauer parameters:
S – spectrum shift versus α-Fe Δ – quadrupole splitting Γ – absorber line width 0.20 mm/s 0.23 mm/s x = 0.33 x = 0.53 x = 0.70 0.30 mm/s 0.35 mm/s
18
BaFe2(As1-xPx)2 x = Tsc = 27.6 K Mössbauer parameters: S – spectrum shift versus α-Fe Δ – quadrupole splitting Γ – absorber line width 0.20 mm/s Traces of magnetic order in superconducting state due to … vicinity of the quantum critical point … or coexistence (?) 0.23 mm/s x = 0.33 x = 0.53 x = 0.70 0.30 mm/s 0.35 mm/s
19
BaFe2(As1-xPx)2 x = 0.53 Tsc = 13.9 K Γ – absorber line width
1 mm/s 3.5 el./Bohr3
20
BaFe2(As1-xPx)2 x = Tsc = 13.9 K Oscillations of the spectral line-width vs. temperature due to varying electronic charge modulation. One gets 0.2 el./(Bohr radius)3 electron density oscillation on the iron nuclei across formation of the superconducting state. Γ – absorber line width x = 0.33 x = 0.53 x = 0.70 1 mm/s 3.5 el./Bohr3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.