Download presentation
Presentation is loading. Please wait.
1
Regge Description of ππ Scatterings at Forward Angles
Byung-Geel Yu Korea Aerospace Univ. in collaboration with K.-J. Kong APCTP-JLab Joint workshop APCTP, July 1-4, 2018
2
Outline I. Motivation and objectives II. Reggeized model
Overview: ππ reaction most fundamental to understand strong interaction from QCD origin Investigate ππ charge exchange (CEX) and elastic reactions Establish scattering amplitude beyond resonances up to π β22 GeV ( π πΏ β250 GeV/c) based on Lagrangian formulation for hadron interactions (in communication with Effective Lagrangian Approach) II. Reggeized model Reggeized Born amplitudes for ππ CEX and elastic scatterings Reggeon, Elastic Regge cuts, & Pomeron exch. in quark- Pomeron coupling picture. III. Results & summary Numerical results in cross sections & polarization observables
3
I. Overview : features of cross sections
π π (ππβπππ)= π ππ + π ππππ Ξ ++ (1232) π ππ =π(ππβππ) π ππππ = π π· + π π·π· +β¦ Ξ ++ (1905) Resonance structure in low π πΏ , nonresonant diffraction at high π πΏ π~ 1 π πΌπ [π(π‘=0)] 2 ~ π πΌ 0 β1 πΌ 0 β1<0 :π
ππππππ πΌ(0)β0.5 πΌ 0 β1>0 :πππππππ πΌ 0 β1+π Regge description for cross sections over resonances π~ π πΌπ‘+πΌ(0) Ξ 0 (1232) π(1675)
4
Total and elastic cross sections
Existing models : Total reactions in the t-ch. helicity Reggeons with coupling strength (residues) fit to exp. data Mathieu (2015), Nys (2018) from JPAC Huang (2008) π π₯ ~ π½ 13 (π‘) π½ 24 (π‘) β π₯ (π ,π‘) Present work : CEX and elastic reaction in the Reggeized Born terms with interaction Lagrangians and coupling constants common in other hadron reactions, e.g., photoproductions π π₯ ~ β π₯πΎπΎ (0) Ξ π₯ β π₯ππ (0) β π₯ (π ,π‘)
5
ππ Cross sections at high energies
Total crs. section Elastic crs. section A π Β± π =β+ π 2 βπ π π Β± π =π+ π 2 +ββπβπ π large enough to make difference π, π small & make no difference, V. Mathieu, et al., PRD92, (2015)
6
II. Reggeized Born term model
Assume s-channel helicity conserved π₯-Reggeon in t-ch. π π΅ = β π₯ππ (0) Ξ π₯ πβπ π‘β π π₯ 2 β π₯ππ (0) βΆ π π
= β π₯ππ (0) Ξ π₯ (πβπ) β π₯ππ (0) β π₯ (π ,π‘) reggeization β π₯ π ,π‘ = π πΌ β² π+ π βπππΌ π‘ Ξ πΌ π‘ +1βπ½ π ππππΌ(π‘) ( π π 0 ) πΌ π‘ βπ½ βΆ ( π‘β π π₯ 2 ) β1 trajectory πΌ π‘ = πΌ β² π‘+πΌ(0) phase (β1 ) π½ + π βπππΌ ; nEXD 1, π βπππΌ ; EXD (π, π 2 ), (π, π 2 ) π₯-π elastic Regge-cut π π
π = β π₯ππ 0 Ξ π₯ πβπ β π₯ππ 0 { β π₯ π ,π‘ + πΆ π π π π π‘ π β ππ πΌ π 2 ( π π 0 ) πΌ π β1 } πΌ π π‘ = πΌ π₯ β² πΌ π β² πΌ π₯ β² +πΌ π β² π‘+ πΌ π₯ 0 + πΌ π (0)
7
Quark-Pomeron coupling picture
Donnachie-Landshoff (DL) NPB244, , Laget NPA581, - Pomeron couples to an individual quark in the hadron rather than the hadron as a whole. - Cpling strength of Pomeron to a hadron is determined by the radius of hadron (FF) Isoscalar photon of C=+1 ββππ~ πΉ β (π‘) π½ π πΎ π ππ(ππ) ππ‘ = 1 4π π 2 | 2 π½ π πΉ π (βπ πΌ β² π ) πΌ β π‘ (3 π½ π β² πΉ 1 ) | 2 Pichowsky PRD56, - Current quark propagation from DSE of QCD π π β1 (π)=πΎβππ΄ π 2 +π΅( π 2 ) - quark-meson vertex BS amplitude Ξ π π =π πΎ 5 πΆ( π 2 ) Ξ π π =π πΎ 5 πΆ( π 2 ) - But, current quark propagation at high E β free quark propagation, and on-shell approximation for quark loops with hadron form factors are a good approximation
8
Off-shell quark loop (π=βπ/2)
Soft Pomeron Exch. Pseudoscalar cpl. at πππ vertex Cpl.const. from G-T relation at quark level π πππ 2 π π = 1 2 π π π π΄ Ξ π (π)=π π πππ πΎ 5 , Off-shell quark loop (π=βπ/2) Vector meson photo. Pomeron amp. ππ scatt. π β =π 2πΉ π π‘ π½ π π πππ 2 2 π π 2 2π π 2 β π π 2 2 βπ‘ πΉ βππ π‘ (3 πΉ 1 π‘ π½ π β² ) π’ (πβ²)πΎβ π+π π’ π β β (π ,π‘) Form Factors πΉ π π‘ =( 1βπ‘/ Ξ 2 ) β1 Pion EM form factor πΉ βππ π‘ = 2π π π π 2 βπ‘ π 0 2 =1.1 πΊππ 2 fixed πΉ 1 π‘ Nucleon isoscalar F.F. fixed
9
Singularity of Pomeron at low energy from quark loop
4 π π 2 = π π 2 leads to a singularity, in principle, and the unwanted divergence near threshold significantly in KN case. Pion form factor with cutoff Ξ having energy dependence to control the range of suppression. πΉ π π‘ =( 1βπ‘/ Ξ 2 ) βπ Ξ π = π π (πβ π π‘β )
10
III. CEX & Elastic Cross sections
π β πβ π 0 π charge exchange reaction - Only π-exch. allowed - DCS shows a dip at NWSZ of πΌ π π‘ =0 - Dip-filling mechanism - Interference with another π for P π=β 2 [π 775 +π(1450)+π-cuts] π-Reggeon πΌ πΊ π½ ππΆ = 1 + ( 1 ββ ) π π = π πππ (π+π ) π (β π ππ + π π π π / π π 2 ){ π πππ π£ πΎ π + π πππ π‘ 4π πΎ π , πΎβπ } β π (π ,π‘) Elastic Regge cuts π- π 2 & π-π‘ π π
π = β π₯ππ 0 Ξ π₯ π β π₯ππ 0 { β π₯ π ,π‘ + πΆ π π π π π‘ π β ππ πΌ π 2 ( π π 0 ) πΌ π β1 } πΌ π π‘ =0.9π‘+0.53, πΌ π‘ π‘ =0.9π‘+0.46
11
Good to test π-trajectory & cpl. const. π-trajectory
πΌ π π‘ =0.9π‘+0.46 πΌ π π‘ =0.8π‘+0.55 π-cpl.const. π πππ π£ =2.6, π
π =3.7 (VMD) π πππ π£ =3, π
π =6.2 (NN) π- π 2 & π-π‘ cuts Another π for polarization π 1450 , (1 ββ ) Trajectory from Rel. quark model D. Ebert, et al., PRD79, (2018) πΌ π π‘ =π‘β1.23 cpl.const. from the fit πΊ π(1450)ππ π£ =40, πΊ π(1450)ππ π‘ =β75
13
- Energy-dependence of crs. sec. in good agreement with data
- Background contribution to π β study 2 3 F. Huang, et al., EPJA40, 77 (2009)
14
π Β± πβ π Β± π Elastic Scattering
- Mesons of natural parity meson with 2π decay π π Β± π =πΒ±π+ π 2 βπ +β Scalar meson π ( 0 ++ ) - lightest meson at low energy - Uncertain due to large decay width, π π ~ Ξ π - Treated as a self-energy term π-Reggeon πΌ π π‘ =0.7(π‘β π π 2 ) phase=1/2(1+ π βπππΌ ) chiral partner π πππ β π πππ
15
Significant role of π 2 Vector meson π(782) 0 β ( 1 ββ )
B.-G.Yu, et al., PLB701, 332 (2011) Vector meson π(782) 0 β ( 1 ββ ) πΌ π π‘ =0.9π‘+0.44 Tensor meson π 2 (1275) 0 + ( 2 ++ ) πΌ π π‘ =0.9π‘+0.53 Significant role of π 2 Determination of cpl. const. π π 2 ππ and phase (πβ π 2 ) EXD pair β constant phase β1β for both reactions π 2 -Reggeon
16
Coupling constants, etc β¦
π πππ estimated from exp. decay width π½ π’ = π½ π =2.07 πΊππ β1 , π½ π =1.6 πΊππ β1 π πππ =2.65 obtained from π π΄ =1.25, π π =93.1 MeV
17
ππ Elastic cross sections
Determine Pomeron trajectory from data at p=100, 200 GeV/c Isocalar Pomeron only at P=100, 200 GeV/c in both reactions. Slope 0.12 is flatter than 0.25 from photoproductions, Total crs. sec. Data at lower momenta insensitive to cutoff mass π πΌ β π‘ =0.12π‘+1.06 (πΌ β π‘ =0.25π‘+1.08)
18
ππ Elastic cross sections
- Dominance of π 2 and Pomeron, and possibly π near threshold. - Role of self-energy term for π - π, π minor roles. - Polarization sensitive to π 2 and Pomeron - Mirror symmetry well-reproduced
19
Summary - Roles of meson exch. are investigated in ππ CEX and elastic reactions up to 250 GeV/c. - Unique roles of vector meson π(775) in the ππ CEX are studied. - Soft Pomeron in the quark-Pomeron coupling picture is constructed for ππ elastic scatterings and applied successfully only with one parameter π. - Dominance of isoscalar channel, π 2 (1275) and Pomeron over π πΏ β2 GeV/c in ππ elastic scatterings. - Polarizations for ππ reactions are well reproduced. - Present Model offers a useful tool to explore 12 GeV region and provides mesonic background contributions good enough to analyze baryon resonances while communicating with Lagrangian formulation.
20
Backup
21
I. Overview : features of cross sections
π π (ππβπππ)= π ππ + π ππππ Ξ ++ (1232) π ππ =π(ππβππ) π ππππ = π π· + π π·π· +β¦ Ξ ++ (1905) By optical theorem, total and elastic crs.sec. are related as π π = 1 2ππ πΌπ[ π ππ (π ,0)] By Pomeranchuck theorem, particle and antiparticle crs. sec. are equal at high E π π ππ β π π ( π π) as π ββ Ξ 0 (1232) Baryon resonances in low π πΏ , nonresonant diffraction at high π πΏ π(1675)
22
Overview : Features of cross sections
Energy-dep. from Regge Theory Amp. π~π π‘ π πΌ π‘ DCS ππ ππ‘ ~ 1 π 2 |π| 2 ~ π 2πΌ π‘ β2 TCS π~ 1 π πΌπ [π(π‘=0)] 2 ~ π πΌ 0 β1 πΌ 0 β1<0 :π
ππππππ πΌ(0)β0.5 πΌ 0 β1>0 :πππππππ πΌ 0 β1+π Exch. of trajectory πΌ π‘ = πΌ β² π‘+πΌ(0) BDS No resonances in π πΎ + π repulsive s-wave phase shift below π πΏ ~1 GeV/c. πΎ π B.S. in the πΞ£ continuum in π πΎ β π subthreshold. cpled ch.
23
ππ Cross sections at high energies
Total crs. section Elastic crs. section π π Β± π =π+ π 2 +ββπβπ A π Β± π =β+ π 2 βπ π, π small & make no difference, Slope of Pomeron πΌ π‘ π‘ different π large enough to make difference Pomeron for elastic crs.sec. Pomeron for tot. crs. sec.
24
πΎπ Cross sections at high energies
Total crs. section Elastic crs. section π΄( πΎ Β± π)=βπΒ±π+ π 2 + π 2 +β π πΎ Β± π = π 0 + π 0 βπ+ π 2 + π 2 +β π, π large enough to make difference π small & make no difference Slope of Pomeron πΌ π‘ π‘ different
25
KN CEX & Elastic reactions
Elastic amp. π πΎ Β± π = π 0 + π 0 βπ+ π 2 + π 2 +β π πΎ Β± π = π 0 β π 0 βπ+ π 2 β π 2 +β Isospin relations between amp. π πΎ β πβ πΎ 0 π =π πΎ β πβ πΎ β π βπ( πΎ β πβ πΎ β π) π πΎ + πβ πΎ 0 π =π πΎ + πβ πΎ + π βπ( πΎ + πβ πΎ + π) CEX amp. π πΎ β πβ πΎ 0 π =π πΎ + πβ πΎ 0 π =2( π 0 + π 2 ) - Only isovector scalar meson π and tensor meson π 2 (1320) exch. - Good for testing tensor meson π 2 (1320) - Data show no evidence of dip: complex phases for scalar & tensor mesons
26
πΎ β πβ πΎ 0 π, πΎ + πβ πΎ 0 π CEX - Dominance of tensor meson π 2 (1320) over π πΏ β2 GeV/c - Consistency with data obtained by 3x π π 0 ππ for first 4 data points - π π 0 ππ =21.7 from πΎπβππ - Data show equality of both processes: same amp. for both reactions
27
πΎ Β± πβ πΎ Β± π Elastic reactions
- Pomeron exch. universial with ππ reaction. - π πΎππ =0.998 fit to data - Tips from ratio at π πΏ =250 GeV/c π ππ ( πΎ + π) π ππ ( π + π) = β | π πΎππ 2 π πΎ 2 π½ π | 2 | π πππ 2 π π 2 π½ π | 2 π πΎππ β0.3 π πππ β0.8 πΌ β π‘ =0.12π‘+1.06
28
πΎ + π elastic cross section at low energy
Repulsive s-wave phase shift π ππ’ππ = 8ππ 4ππβ² 1 π π π πΏ π π ππ πΏ π Parameterize s-wave: πΏ π π =π΄ π 2 +π΅π+πΆ match point πΏ π π =π· π β(πβ π 0 )/ π 0 π 0 =1.5 πΊππ/π s-wave + Pomeron in the absence of resonance πΉ πΎ π‘ =( 1βπ‘/ Ξ 2 ) β1 Ξ π = π (πβ π π‘β )
29
πΎπ Elastic total cross sections
- Repulsive s-wave phase shift below 1 GeV/c in πΎ + π elastic process. - Complicated reaction mechanism below 1 GeV/c in πΎ β π elastic process. - π vector meson contribution negligible: Data show equality of both processes πΎ + π and πΎ β π except for low momentum region - Dominance of π 2 (1275) and Pomeron over π πΏ β2 GeV/c
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.