Presentation is loading. Please wait.

Presentation is loading. Please wait.

Regge Description of

Similar presentations


Presentation on theme: "Regge Description of "β€” Presentation transcript:

1 Regge Description of πœ‹π‘ Scatterings at Forward Angles
Byung-Geel Yu Korea Aerospace Univ. in collaboration with K.-J. Kong APCTP-JLab Joint workshop APCTP, July 1-4, 2018

2 Outline I. Motivation and objectives II. Reggeized model
Overview: πœ‹π‘ reaction most fundamental to understand strong interaction from QCD origin Investigate πœ‹π‘ charge exchange (CEX) and elastic reactions Establish scattering amplitude beyond resonances up to 𝑠 β‰ˆ22 GeV ( 𝑝 𝐿 β‰ˆ250 GeV/c) based on Lagrangian formulation for hadron interactions (in communication with Effective Lagrangian Approach) II. Reggeized model Reggeized Born amplitudes for πœ‹π‘ CEX and elastic scatterings Reggeon, Elastic Regge cuts, & Pomeron exch. in quark- Pomeron coupling picture. III. Results & summary Numerical results in cross sections & polarization observables

3 I. Overview : features of cross sections
𝜎 𝑇 (πœ‹π‘β†’π‘Žπ‘™π‘™)= 𝜎 𝑒𝑙 + 𝜎 𝑖𝑛𝑒𝑙 Ξ” ++ (1232) 𝜎 𝑒𝑙 =𝜎(πœ‹π‘β†’πœ‹π‘) 𝜎 𝑖𝑛𝑒𝑙 = 𝜎 𝐷 + 𝜎 𝐷𝐷 +… Ξ” ++ (1905) Resonance structure in low 𝑃 𝐿 , nonresonant diffraction at high 𝑃 𝐿 𝜎~ 1 𝑠 πΌπ‘š [𝑀(𝑑=0)] 2 ~ 𝑠 𝛼 0 βˆ’1 𝛼 0 βˆ’1<0 :π‘…π‘’π‘”π‘”π‘’π‘œπ‘› 𝛼(0)β‰ˆ0.5 𝛼 0 βˆ’1>0 :π‘ƒπ‘œπ‘šπ‘’π‘Ÿπ‘œπ‘› 𝛼 0 β‰ˆ1+πœ– Regge description for cross sections over resonances 𝑀~ 𝑠 𝛼𝑑+𝛼(0) Ξ” 0 (1232) 𝑁(1675)

4 Total and elastic cross sections
Existing models : Total reactions in the t-ch. helicity Reggeons with coupling strength (residues) fit to exp. data Mathieu (2015), Nys (2018) from JPAC Huang (2008) 𝑀 π‘₯ ~ 𝛽 13 (𝑑) 𝛽 24 (𝑑) β„› π‘₯ (𝑠,𝑑) Present work : CEX and elastic reaction in the Reggeized Born terms with interaction Lagrangians and coupling constants common in other hadron reactions, e.g., photoproductions 𝑀 π‘₯ ~ β„’ π‘₯𝐾𝐾 (0) Ξ  π‘₯ β„’ π‘₯𝑁𝑁 (0) β„› π‘₯ (𝑠,𝑑)

5 πœ‹π‘ Cross sections at high energies
Total crs. section Elastic crs. section A πœ‹ Β± 𝑝 =β„™+ 𝑓 2 βˆ“πœŒ 𝑀 πœ‹ Β± 𝑝 =𝜎+ 𝑓 2 +β„™βˆ“πœ”βˆ“πœŒ 𝜌 large enough to make difference 𝜌, πœ” small & make no difference, V. Mathieu, et al., PRD92, (2015)

6 II. Reggeized Born term model
Assume s-channel helicity conserved π‘₯-Reggeon in t-ch. 𝑀 𝐡 = β„’ π‘₯πœ‹πœ‹ (0) Ξ  π‘₯ π‘žβˆ’π‘˜ π‘‘βˆ’ π‘š π‘₯ 2 β„’ π‘₯𝑁𝑁 (0) ⟢ 𝑀 𝑅 = β„’ π‘₯πœ‹πœ‹ (0) Ξ  π‘₯ (π‘žβˆ’π‘˜) β„’ π‘₯𝑁𝑁 (0) β„› π‘₯ (𝑠,𝑑) reggeization β„› π‘₯ 𝑠,𝑑 = πœ‹ 𝛼 β€² πœ‰+ 𝑒 βˆ’π‘–πœ‹π›Ό 𝑑 Ξ“ 𝛼 𝑑 +1βˆ’π½ π‘ π‘–π‘›πœ‹π›Ό(𝑑) ( 𝑠 𝑠 0 ) 𝛼 𝑑 βˆ’π½ ⟢ ( π‘‘βˆ’ π‘š π‘₯ 2 ) βˆ’1 trajectory 𝛼 𝑑 = 𝛼 β€² 𝑑+𝛼(0) phase (βˆ’1 ) 𝐽 + 𝑒 βˆ’π‘–πœ‹π›Ό ; nEXD 1, 𝑒 βˆ’π‘–πœ‹π›Ό ; EXD (𝜌, π‘Ž 2 ), (πœ”, 𝑓 2 ) π‘₯-πœ‘ elastic Regge-cut 𝑀 𝑅 𝑐 = β„’ π‘₯πœ‹πœ‹ 0 Ξ  π‘₯ π‘žβˆ’π‘˜ β„’ π‘₯𝑁𝑁 0 { β„› π‘₯ 𝑠,𝑑 + 𝐢 πœ‘ 𝑒 𝑑 πœ‘ 𝑑 𝑒 βˆ’ π‘–πœ‹ 𝛼 𝑐 2 ( 𝑠 𝑠 0 ) 𝛼 𝑐 βˆ’1 } 𝛼 𝑐 𝑑 = 𝛼 π‘₯ β€² 𝛼 πœ‘ β€² 𝛼 π‘₯ β€² +𝛼 πœ‘ β€² 𝑑+ 𝛼 π‘₯ 0 + 𝛼 πœ‘ (0)

7 Quark-Pomeron coupling picture
Donnachie-Landshoff (DL) NPB244, , Laget NPA581, - Pomeron couples to an individual quark in the hadron rather than the hadron as a whole. - Cpling strength of Pomeron to a hadron is determined by the radius of hadron (FF) Isoscalar photon of C=+1 β†’β„™π‘žπ‘ž~ 𝐹 β„Ž (𝑑) 𝛽 π‘ž 𝛾 πœ‡ π‘‘πœŽ(πœ‹π‘) 𝑑𝑑 = 1 4πœ‹ 𝑠 2 | 2 𝛽 π‘ž 𝐹 πœ‹ (βˆ’π‘– 𝛼 β€² 𝑠 ) 𝛼 β„™ 𝑑 (3 𝛽 π‘ž β€² 𝐹 1 ) | 2 Pichowsky PRD56, - Current quark propagation from DSE of QCD 𝑠 𝑓 βˆ’1 (𝑙)=π›Ύβˆ™π‘™π΄ 𝑙 2 +𝐡( 𝑙 2 ) - quark-meson vertex BS amplitude Ξ“ πœ‹ π‘˜ =𝑖 𝛾 5 𝐢( π‘˜ 2 ) Ξ“ πœ‹ π‘˜ =𝑖 𝛾 5 𝐢( π‘˜ 2 ) - But, current quark propagation at high E β‡’ free quark propagation, and on-shell approximation for quark loops with hadron form factors are a good approximation

8 Off-shell quark loop (𝑙=βˆ’π‘ž/2)
Soft Pomeron Exch. Pseudoscalar cpl. at πœ‹π‘žπ‘ž vertex Cpl.const. from G-T relation at quark level 𝑓 πœ‹π‘žπ‘ž 2 π‘š π‘ž = 1 2 𝑓 πœ‹ 𝑔 𝐴 Ξ“ πœ‹ (π‘˜)=𝑖 𝑓 πœ‹π‘žπ‘ž 𝛾 5 , Off-shell quark loop (𝑙=βˆ’π‘ž/2) Vector meson photo. Pomeron amp. πœ‹π‘ scatt. 𝑀 β„™ =𝑖 2𝐹 πœ‹ 𝑑 𝛽 π‘ž 𝑓 πœ‹π‘žπ‘ž 2 2 π‘š πœ‹ 2 2π‘š π‘ž 2 βˆ’ π‘š πœ‹ 2 2 βˆ’π‘‘ 𝐹 β„™π‘žπ‘ž 𝑑 (3 𝐹 1 𝑑 𝛽 π‘ž β€² ) 𝑒 (𝑝′)π›Ύβˆ™ π‘˜+π‘ž 𝑒 𝑝 β„› β„™ (𝑠,𝑑) Form Factors 𝐹 πœ‹ 𝑑 =( 1βˆ’π‘‘/ Ξ› 2 ) βˆ’1 Pion EM form factor 𝐹 β„™π‘žπ‘ž 𝑑 = 2πœ‡ πœ‡ 𝑀 π‘ž 2 βˆ’π‘‘ πœ‡ 0 2 =1.1 𝐺𝑒𝑉 2 fixed 𝐹 1 𝑑 Nucleon isoscalar F.F. fixed

9 Singularity of Pomeron at low energy from quark loop
4 π‘š π‘ž 2 = π‘š πœ‹ 2 leads to a singularity, in principle, and the unwanted divergence near threshold significantly in KN case. Pion form factor with cutoff Ξ› having energy dependence to control the range of suppression. 𝐹 πœ‹ 𝑑 =( 1βˆ’π‘‘/ Ξ› 2 ) βˆ’π‘› Ξ› π‘Š = π‘˜ πœ‡ (π‘Šβˆ’ π‘Š π‘‘β„Ž )

10 III. CEX & Elastic Cross sections
πœ‹ βˆ’ 𝑝→ πœ‹ 0 𝑛 charge exchange reaction - Only 𝜌-exch. allowed - DCS shows a dip at NWSZ of 𝛼 𝜌 𝑑 =0 - Dip-filling mechanism - Interference with another 𝜌 for P 𝑀=βˆ’ 2 [𝜌 775 +𝜌(1450)+𝜌-cuts] 𝜌-Reggeon 𝐼 𝐺 𝐽 𝑃𝐢 = 1 + ( 1 βˆ’βˆ’ ) 𝑀 𝜌 = 𝑔 πœŒπœ‹πœ‹ (π‘ž+π‘˜ ) πœ‡ (βˆ’ 𝑔 πœ‡πœˆ + 𝑄 πœ‡ 𝑄 𝜈 / π‘š 𝜌 2 ){ 𝑔 πœŒπ‘π‘ 𝑣 𝛾 𝜈 + 𝑔 πœŒπ‘π‘ 𝑑 4𝑀 𝛾 𝜈 , π›Ύβˆ™π‘„ } β„› 𝜌 (𝑠,𝑑) Elastic Regge cuts 𝜌- 𝑓 2 & 𝜌-𝕑 𝑀 𝑅 𝑐 = β„’ π‘₯πœ‹πœ‹ 0 Ξ  π‘₯ 𝑄 β„’ π‘₯𝑁𝑁 0 { β„› π‘₯ 𝑠,𝑑 + 𝐢 πœ‘ 𝑒 𝑑 πœ‘ 𝑑 𝑒 βˆ’ π‘–πœ‹ 𝛼 𝑐 2 ( 𝑠 𝑠 0 ) 𝛼 𝑐 βˆ’1 } 𝛼 𝑓 𝑑 =0.9𝑑+0.53, 𝛼 𝕑 𝑑 =0.9𝑑+0.46

11 Good to test 𝜌-trajectory & cpl. const. 𝜌-trajectory
𝛼 𝜌 𝑑 =0.9𝑑+0.46 𝛼 𝜌 𝑑 =0.8𝑑+0.55 𝜌-cpl.const. 𝑔 πœŒπ‘π‘ 𝑣 =2.6, πœ… 𝜌 =3.7 (VMD) 𝑔 πœŒπ‘π‘ 𝑣 =3, πœ… 𝜌 =6.2 (NN) 𝜌- 𝑓 2 & 𝜌-𝕑 cuts Another 𝜌 for polarization 𝜌 1450 , (1 βˆ’βˆ’ ) Trajectory from Rel. quark model D. Ebert, et al., PRD79, (2018) 𝛼 𝜌 𝑑 =π‘‘βˆ’1.23 cpl.const. from the fit 𝐺 𝜌(1450)𝑁𝑁 𝑣 =40, 𝐺 𝜌(1450)𝑁𝑁 𝑑 =βˆ’75

12

13 - Energy-dependence of crs. sec. in good agreement with data
- Background contribution to 𝑁 βˆ— study 2 3 F. Huang, et al., EPJA40, 77 (2009)

14 πœ‹ Β± 𝑝→ πœ‹ Β± 𝑝 Elastic Scattering
- Mesons of natural parity meson with 2πœ‹ decay 𝑀 πœ‹ Β± 𝑝 =𝜎±𝜌+ 𝑓 2 βˆ“πœ” +β„™ Scalar meson 𝜎 ( 0 ++ ) - lightest meson at low energy - Uncertain due to large decay width, π‘š 𝜎 ~ Ξ“ 𝜎 - Treated as a self-energy term 𝜎-Reggeon 𝛼 𝜎 𝑑 =0.7(π‘‘βˆ’ π‘š 𝜎 2 ) phase=1/2(1+ 𝑒 βˆ’π‘–πœ‹π›Ό ) chiral partner 𝑔 πœŽπ‘π‘ β‰ˆ 𝑔 πœ‹π‘π‘

15 Significant role of 𝑓 2 Vector meson πœ”(782) 0 βˆ’ ( 1 βˆ’βˆ’ )
B.-G.Yu, et al., PLB701, 332 (2011) Vector meson πœ”(782) 0 βˆ’ ( 1 βˆ’βˆ’ ) 𝛼 πœ” 𝑑 =0.9𝑑+0.44 Tensor meson 𝑓 2 (1275) 0 + ( 2 ++ ) 𝛼 𝑓 𝑑 =0.9𝑑+0.53 Significant role of 𝑓 2 Determination of cpl. const. 𝑔 𝑓 2 𝑁𝑁 and phase (πœ”βˆ’ 𝑓 2 ) EXD pair β‡’ constant phase β€œ1” for both reactions 𝑓 2 -Reggeon

16 Coupling constants, etc …
𝑔 πœ‘πœ‹πœ‹ estimated from exp. decay width 𝛽 𝑒 = 𝛽 𝑑 =2.07 𝐺𝑒𝑉 βˆ’1 , 𝛽 𝑠 =1.6 𝐺𝑒𝑉 βˆ’1 𝑓 πœ‹π‘žπ‘ž =2.65 obtained from 𝑔 𝐴 =1.25, 𝑓 πœ‹ =93.1 MeV

17 πœ‹π‘ Elastic cross sections
Determine Pomeron trajectory from data at p=100, 200 GeV/c Isocalar Pomeron only at P=100, 200 GeV/c in both reactions. Slope 0.12 is flatter than 0.25 from photoproductions, Total crs. sec. Data at lower momenta insensitive to cutoff mass πœ‡ 𝛼 β„™ 𝑑 =0.12𝑑+1.06 (𝛼 β„™ 𝑑 =0.25𝑑+1.08)

18 πœ‹π‘ Elastic cross sections
- Dominance of 𝑓 2 and Pomeron, and possibly 𝜎 near threshold. - Role of self-energy term for 𝜎 - 𝜌, πœ” minor roles. - Polarization sensitive to 𝑓 2 and Pomeron - Mirror symmetry well-reproduced

19 Summary - Roles of meson exch. are investigated in πœ‹π‘ CEX and elastic reactions up to 250 GeV/c. - Unique roles of vector meson 𝜌(775) in the πœ‹π‘ CEX are studied. - Soft Pomeron in the quark-Pomeron coupling picture is constructed for πœ‹π‘ elastic scatterings and applied successfully only with one parameter πœ‡. - Dominance of isoscalar channel, 𝑓 2 (1275) and Pomeron over 𝑃 𝐿 β‰ˆ2 GeV/c in πœ‹π‘ elastic scatterings. - Polarizations for πœ‹π‘ reactions are well reproduced. - Present Model offers a useful tool to explore 12 GeV region and provides mesonic background contributions good enough to analyze baryon resonances while communicating with Lagrangian formulation.

20 Backup

21 I. Overview : features of cross sections
𝜎 𝑇 (πœ‹π‘β†’π‘Žπ‘™π‘™)= 𝜎 𝑒𝑙 + 𝜎 𝑖𝑛𝑒𝑙 Ξ” ++ (1232) 𝜎 𝑒𝑙 =𝜎(πœ‹π‘β†’πœ‹π‘) 𝜎 𝑖𝑛𝑒𝑙 = 𝜎 𝐷 + 𝜎 𝐷𝐷 +… Ξ” ++ (1905) By optical theorem, total and elastic crs.sec. are related as 𝜎 𝑇 = 1 2π‘˜π‘Š πΌπ‘š[ 𝑀 𝑒𝑙 (𝑠,0)] By Pomeranchuck theorem, particle and antiparticle crs. sec. are equal at high E 𝜎 𝑇 π‘Žπ‘ β‰ˆ 𝜎 𝑇 ( π‘Ž 𝑏) as π‘ β†’βˆž Ξ” 0 (1232) Baryon resonances in low 𝑃 𝐿 , nonresonant diffraction at high 𝑃 𝐿 𝑁(1675)

22 Overview : Features of cross sections
Energy-dep. from Regge Theory Amp. 𝑀~𝑓 𝑑 𝑠 𝛼 𝑑 DCS π‘‘πœŽ 𝑑𝑑 ~ 1 𝑠 2 |𝑀| 2 ~ 𝑠 2𝛼 𝑑 βˆ’2 TCS 𝜎~ 1 𝑠 πΌπ‘š [𝑀(𝑑=0)] 2 ~ 𝑠 𝛼 0 βˆ’1 𝛼 0 βˆ’1<0 :π‘…π‘’π‘”π‘”π‘’π‘œπ‘› 𝛼(0)β‰ˆ0.5 𝛼 0 βˆ’1>0 :π‘ƒπ‘œπ‘šπ‘’π‘Ÿπ‘œπ‘› 𝛼 0 β‰ˆ1+πœ– Exch. of trajectory 𝛼 𝑑 = 𝛼 β€² 𝑑+𝛼(0) BDS No resonances in 𝜎 𝐾 + 𝑝 repulsive s-wave phase shift below 𝑃 𝐿 ~1 GeV/c. 𝐾 𝑁 B.S. in the πœ‹Ξ£ continuum in 𝜎 𝐾 βˆ’ 𝑝 subthreshold. cpled ch.

23 πœ‹π‘ Cross sections at high energies
Total crs. section Elastic crs. section 𝑀 πœ‹ Β± 𝑝 =𝜎+ 𝑓 2 +β„™βˆ“πœ”βˆ“πœŒ A πœ‹ Β± 𝑝 =β„™+ 𝑓 2 βˆ“πœŒ 𝜌, πœ” small & make no difference, Slope of Pomeron 𝛼 𝕑 𝑑 different 𝜌 large enough to make difference Pomeron for elastic crs.sec. Pomeron for tot. crs. sec.

24 𝐾𝑝 Cross sections at high energies
Total crs. section Elastic crs. section 𝐴( 𝐾 Β± 𝑝)=βˆ“πœŒΒ±πœ”+ 𝑓 2 + π‘Ž 2 +β„™ 𝑀 𝐾 Β± 𝑝 = 𝑓 0 + π‘Ž 0 βˆ“πœ™+ 𝑓 2 + π‘Ž 2 +β„™ 𝜌, πœ” large enough to make difference πœ‘ small & make no difference Slope of Pomeron 𝛼 𝕑 𝑑 different

25 KN CEX & Elastic reactions
Elastic amp. 𝑀 𝐾 Β± 𝑝 = 𝑓 0 + π‘Ž 0 βˆ“πœ™+ 𝑓 2 + π‘Ž 2 +β„™ 𝑀 𝐾 Β± 𝑛 = 𝑓 0 βˆ’ π‘Ž 0 βˆ“πœ™+ 𝑓 2 βˆ’ π‘Ž 2 +β„™ Isospin relations between amp. 𝑀 𝐾 βˆ’ 𝑝→ 𝐾 0 𝑛 =𝑀 𝐾 βˆ’ 𝑝→ 𝐾 βˆ’ 𝑝 βˆ’π‘€( 𝐾 βˆ’ 𝑛→ 𝐾 βˆ’ 𝑛) 𝑀 𝐾 + 𝑛→ 𝐾 0 𝑝 =𝑀 𝐾 + 𝑝→ 𝐾 + 𝑝 βˆ’π‘€( 𝐾 + 𝑛→ 𝐾 + 𝑛) CEX amp. 𝑀 𝐾 βˆ’ 𝑝→ 𝐾 0 𝑛 =𝑀 𝐾 + 𝑛→ 𝐾 0 𝑝 =2( π‘Ž 0 + π‘Ž 2 ) - Only isovector scalar meson π‘Ž and tensor meson π‘Ž 2 (1320) exch. - Good for testing tensor meson π‘Ž 2 (1320) - Data show no evidence of dip: complex phases for scalar & tensor mesons

26 𝐾 βˆ’ 𝑝→ 𝐾 0 𝑛, 𝐾 + 𝑛→ 𝐾 0 𝑝 CEX - Dominance of tensor meson π‘Ž 2 (1320) over 𝑃 𝐿 β‰ˆ2 GeV/c - Consistency with data obtained by 3x 𝑔 π‘Ž 0 𝑁𝑁 for first 4 data points - 𝑔 π‘Ž 0 𝑁𝑁 =21.7 from π›Ύπ‘β†’πœ™π‘ - Data show equality of both processes: same amp. for both reactions

27 𝐾 Β± 𝑝→ 𝐾 Β± 𝑝 Elastic reactions
- Pomeron exch. universial with πœ‹π‘ reaction. - 𝑓 πΎπ‘žπ‘ž =0.998 fit to data - Tips from ratio at 𝑃 𝐿 =250 GeV/c 𝜎 𝑒𝑙 ( 𝐾 + 𝑝) 𝜎 𝑒𝑙 ( πœ‹ + 𝑝) = β‰ˆ | 𝑓 πΎπ‘žπ‘ž 2 π‘š 𝐾 2 𝛽 𝑠 | 2 | 𝑓 πœ‹π‘žπ‘ž 2 π‘š πœ‹ 2 𝛽 𝑑 | 2 𝑓 πΎπ‘žπ‘ž β‰ˆ0.3 𝑓 πœ‹π‘žπ‘ž β‰ˆ0.8 𝛼 β„™ 𝑑 =0.12𝑑+1.06

28 𝐾 + 𝑝 elastic cross section at low energy
Repulsive s-wave phase shift 𝑀 𝑛𝑒𝑐𝑙 = 8πœ‹π‘Š 4𝑀𝑀′ 1 π‘˜ 𝑒 𝑖 𝛿 𝑙 𝑠𝑖𝑛 𝛿 𝑙 Parameterize s-wave: 𝛿 𝑙 𝑝 =𝐴 𝑝 2 +𝐡𝑝+𝐢 match point 𝛿 𝑙 𝑝 =𝐷 𝑒 βˆ’(π‘βˆ’ 𝑝 0 )/ π‘š 0 𝑝 0 =1.5 𝐺𝑒𝑉/𝑐 s-wave + Pomeron in the absence of resonance 𝐹 𝐾 𝑑 =( 1βˆ’π‘‘/ Ξ› 2 ) βˆ’1 Ξ› π‘Š = π‘˜ (π‘Šβˆ’ π‘Š π‘‘β„Ž )

29 𝐾𝑝 Elastic total cross sections
- Repulsive s-wave phase shift below 1 GeV/c in 𝐾 + 𝑝 elastic process. - Complicated reaction mechanism below 1 GeV/c in 𝐾 βˆ’ 𝑝 elastic process. - πœ™ vector meson contribution negligible: Data show equality of both processes 𝐾 + 𝑝 and 𝐾 βˆ’ 𝑝 except for low momentum region - Dominance of 𝑓 2 (1275) and Pomeron over 𝑃 𝐿 β‰ˆ2 GeV/c


Download ppt "Regge Description of "

Similar presentations


Ads by Google