Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometry Parametric equations.

Similar presentations


Presentation on theme: "Geometry Parametric equations."β€” Presentation transcript:

1 Geometry Parametric equations

2 Starter: challenge

3 Parametric equations: Cartesian equations
KUS objectives BAT convert between parametric and Cartesian equations of a function Starter: previous page Geogebra: parametric eqns

4 WB5 Parametric eqns – cartesian eqn example I
Find the Cartesian equations of the following curves a) π‘₯=π‘‘βˆ’1 𝑦= 2𝑑 2 +3𝑑 π‘‘βˆˆβ„› b) π‘₯= 𝑑 2 𝑦= 2𝑑 2 +3𝑑 𝑑β‰₯0

5 WB6 find the Cartesian equations of these (eliminate the parameters)
answers π‘₯=4𝑑 , 𝑦=3βˆ’π‘‘ π‘₯=π‘‘βˆ’1 ,𝑦= 𝑑 2 +1 π‘₯=2 𝑑 2 , 𝑦=4(π‘‘βˆ’1) π‘₯=𝑑+2 , 𝑦= 1 𝑑 π‘₯= 𝑑 2 βˆ’1 , 𝑦= 𝑑 2 +1 π‘₯= 𝑑 2 βˆ’1 , 𝑦= 𝑑 4 +1 i) ii) iii) iv) v) vi)

6 WB 7 Draw the curve given by the Parametric Equations: x= 1 𝑑+1 𝑦= 𝑑 2 for βˆ’3≀𝑑≀3
-3 -2 -1 1 2 3 x = 1/(t+1) -1/2 -1 ο‚₯ 1 1/3 y = t2 9 4 1 1 4 9 Hmmmm… is this enough to sketch this graph? equation of the curve? π‘₯= 1 𝑑+1 𝑦= 𝑑 2 𝑦= 1 π‘₯ βˆ’1 2 π‘₯(𝑑+1)=1 𝑑+1= 1 π‘₯ 𝑦= 1 π‘₯ βˆ’ π‘₯ π‘₯ 2 𝑑= 1 π‘₯ βˆ’1 𝑦= 1βˆ’π‘₯ π‘₯ 2 𝑦= (1βˆ’π‘₯) π‘₯ 2 2

7 WB8 Trigonometric Parametric eqns – cartesian eqn
Find the Cartesian equation of the following curve π‘₯= 𝑠𝑖𝑛 𝑑 𝑦= cos 𝑑 βˆ’πœ‹β‰€π‘‘β‰€ πœ‹

8 A curve has Parametric equations: π‘₯=𝑠𝑖𝑛𝑑+2 𝑦=π‘π‘œπ‘ π‘‘βˆ’3
WB 9 A curve has Parametric equations: π‘₯=𝑠𝑖𝑛𝑑 𝑦=π‘π‘œπ‘ π‘‘βˆ’3 a) Find the Cartesian equation of the curve b) Sketch the curve A Cartesian equation is just an equation of a line where the variables used are x and y only π‘₯=𝑠𝑖𝑛𝑑+2 𝑦=π‘π‘œπ‘ π‘‘βˆ’3 π‘₯βˆ’2=𝑠𝑖𝑛𝑑 𝑦+3=π‘π‘œπ‘ π‘‘ How can we link sin t and cos t in an equation? 𝑠𝑖 𝑛 2 𝑑+π‘π‘œ 𝑠 2 𝑑≑1 (π‘₯βˆ’2 ) 2 +(𝑦+3 ) 2 = 1 The equation is that of a circle οƒ  Think about where the centre will be, and its radius 5 (π‘₯βˆ’2 ) 2 +(𝑦+3 ) 2 =1 Centre = (2, -3) Radius = 1 -5 5 -5

9 Another way of writing this (by squaring the whole of each side)
WB 10 A curve has Parametric equations: π‘₯=𝑠𝑖𝑛𝑑 𝑦= sin 2𝑑 a) Find the Cartesian equation of the curve b) Sketch the curve π‘₯=𝑠𝑖𝑛𝑑 𝑦=𝑠𝑖𝑛2𝑑 double angle formula π‘₯ 2 =𝑠𝑖 𝑛 2 𝑑 𝑦=2π‘ π‘–π‘›π‘‘π‘π‘œπ‘ π‘‘ Replace sint with x 𝑦=2π‘₯π‘π‘œπ‘ π‘‘ 𝑠𝑖 𝑛 2 𝑑+π‘π‘œ 𝑠 2 𝑑≑1 b) Geogebra: parametric eqns π‘π‘œ 𝑠 2 𝑑=1βˆ’π‘ π‘– 𝑛 2 𝑑 Replace sin2t with x2 π‘π‘œ 𝑠 2 𝑑=1βˆ’ π‘₯ 2 π‘π‘œπ‘ π‘‘= 1βˆ’ π‘₯ 2 𝑦=2π‘₯π‘π‘œπ‘ π‘‘ We can now replace cos t 𝑦=2π‘₯ 1βˆ’ π‘₯ 2 Another way of writing this (by squaring the whole of each side) 𝑦 2 =4 π‘₯ 2 (1βˆ’ π‘₯ 2 )

10 WB11 find the Cartesian equations of these (eliminate the parameters)
answers π‘₯=3 sin 𝑑 , 𝑦=2 cos 𝑑 π‘₯= sec 𝑑 ,𝑦=5 tan 𝑑 π‘₯=1+ cos 𝑑 , 𝑦=1βˆ’2 sin 𝑑 𝑖𝑣) π‘₯= cos 𝑑 + sin 𝑑 , 𝑦=2 cos 𝑑 + sin 𝑑 𝑣) π‘₯= cos 𝑑+ πœ‹ 4 , 𝑦= 2 sin 𝑑 𝑣𝑖) π‘₯=2 cos 𝑑 βˆ’1 , 𝑦=3+2 sin 𝑑 i) ii) iii) iv) v) vi)

11 Parametric equations –Summary
Parametric equations are written as: A Cartesian equation would be There are three main types of question in the exam Sketch a graph from parametric equations Eliminate (t) to find the Cartesian equation Differentiating to find gradients, tangents and normals Make a table of values – for t, x and y and plot points (x, y) β€˜Zoom in’ on any interesting points – work out more values e.g. to check asymptotes are correct Write one thing you have learned Write one thing you need to improve


Download ppt "Geometry Parametric equations."

Similar presentations


Ads by Google