Presentation is loading. Please wait.

Presentation is loading. Please wait.

CENG 218 Classes and Data Structures

Similar presentations


Presentation on theme: "CENG 218 Classes and Data Structures"— Presentation transcript:

1 CENG 218 Classes and Data Structures

2 Dynamic Arrays in Data Structures
In the class for a data structure, we can add an Array object to the private section to store data The functions of the data structure can expand or shrink the Array to conserve memory – this relieves the client from thinking about doing this

3 Dynamic Arrays in Data Structures (cont.)
In almost every data structure, we want functions for inserting and removing data When dynamic arrays are used, the insertion function would add data to the array, while the removal function would “eliminate” data from the array (make it unusable) When the array becomes full, we would want to do an expansion – when many elements have been removed, we would want to do a contraction, so that only the used elements remain

4 Array Expansion/Contraction
One possible method: When an element is inserted by the client, increase the size of the array by 1 When an element is removed by the client, decrease the size of the array by 1 The problem with this method is that it is inefficient – every time an element is inserted or removed, the changeSize function is called…

5 changeSize Function 33 25 75 10 12 56 32 73 87 New element needs to be put into array, so changeSize function is called

6 changeSize Function (cont.)
25 75 10 12 56 32 73 87 new array is made

7 changeSize Function (cont.)
25 75 10 12 56 32 73 87 25 75 10 12 56 32 73 87 elements are copied over one by one using a for loop

8 changeSize Function (cont.)
33 25 75 10 12 56 32 73 87 33 Then, the new element can be put in

9 changeSize Function (cont.)
25 75 10 12 56 32 73 87 33 This process would take place every time a new element needs to be inserted.

10 changeSize Function (cont.)
25 75 10 12 56 32 73 87 33 Likewise, when an element needs to be removed, this method contracts the array by one to conserve memory.

11 changeSize Function (cont.)
25 75 10 12 56 32 73 87 33 Suppose the element at the end of the array needs to be removed.

12 changeSize Function (cont.)
25 75 10 12 56 32 73 87 33 The changeSize function is called and a new, smaller array is made.

13 changeSize Function (cont.)
25 75 10 12 56 32 73 87 33 25 75 10 12 56 32 73 87 The elements are copied over one by one, using a for loop.

14 changeSize Function (cont.)
25 75 10 12 56 32 73 87 This method of array expansion/contraction is largely inefficient, because there is too much element copying.

15 A Better Method When the Array is full, double the size of it
When the number of elements used in the Array falls to 25% of the Array’s capacity, cut the size of the Array in half (it will be half full after the cut)

16 A Better Method (cont.) 25 75

17 A Better Method (cont.) 25 75 10

18 A Better Method (cont.) 25 75 10 12

19 A Better Method (cont.) 33 25 75 10 12 Array is full, so call changeSize function to double the size.

20 A Better Method (cont.) 25 75 10 12 33

21 A Better Method (cont.) 25 75 10 12 33 49 29 87 This array is full, but if we removed elements (made them inaccessible), we would cut the size of the array in half when its utilization drops to 25%

22 A Better Method (cont.) 25 75 10 12 33 49 29

23 A Better Method (cont.) 25 75 10 12 33 49

24 A Better Method (cont.) 25 75 10 12 33

25 A Better Method (cont.) 25 75 10 12

26 A Better Method (cont.) 25 75 10

27 A Better Method (cont.) 25 75 Array is 25% utilized, so use changeSize function to cut the size of the array in half.

28 A Better Method (cont.) 25 75 Array is 25% utilized, so use changeSize function to cut the size of the array in half.

29 A Better Method (cont.) 25 75 Using this method, memory is still conserved. There is element copying every time changeSize is called, but it isn’t bad.

30 A Better Method (cont.) 25 75 It can be proven that, on average, there are no more than a couple of elements being copied on each insertion/deletion with this method.

31 Linked Structures In a data structure, data is not always stored in an Array object Sometimes it is best to store data in a linked structure (an alternative to an Array) A linked structure consists of a group of nodes – each node is made from a struct. An object of the Node struct contains an element of data.

32 A Node Class Template public class Node<T> { private T data;
The info member is for the data. It can anything (T), but it is often the object of another type, used as a record of information. public class Node<T> { private T data; private Node<T> next; //public getters and setters public Node(T inf){ next=null; data=inf; }

33 A Node Struct Template (cont.)
public class Node<T> { private T data; private Node<T> next; //public getters and setters public Node(T inf){ next=null; data=inf; } The next reference(pointer) stores the address of a Node of the same type! This means that each node can point to another node. data next

34 Nodes In a data structure, each node is made in the heap; therefore, a node can only be accessed by a reference(pointer). The client does not deal with nodes. When the client uses an insertion function, an element of data is passed into the function, and the function places it in a node.

35 Nodes (cont.) When the client wants to retrieve data, the data in a node is returned to the client (but not the node itself). The node struct template exists for use by the data structure.

36 Example of a Linked Structure
head each node is divided into two sections, for the two members of the Node.

37 Example of a Linked Structure (cont.)
head The left section is the data member.

38 Example of a Linked Structure (cont.)
head The right section is the reference(pointer)(or reference) called “next”.

39 Example of a Linked Structure (cont.)
head The head reference(pointer) would be saved in the private section of a data structure class.

40 Example of a Linked Structure (cont.)
head The last node doesn’t point to another node, so its reference(pointer) (called next) is set to null (indicated by slash).

41 Linked Lists The arrangement of nodes in the linked structure on the previous slide is often called a linked list. We can access any element of the linked list, for retrieval of information. We can also remove any element from the linked list (which would shorten the list). We can also insert any element into any position in the linked list.

42 Linked List Advantages
Assume we have a list 100,000 elements 5 3 7 2 1 Removing an element from the middle of a linked list is fast.

43 Linked List Advantages (cont.)
5 3 2 1 7 Removing an element from the middle of a linked list is fast.

44 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 12 33 49 29 87 Removing elements from the middle of an array (without leaving gaps) is more problematic.

45 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87 Removing elements from the middle of an array (without leaving gaps) is more problematic.

46 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87 A loop must be used to slide each element on the right one slot to the left, one at a time…

47 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87

48 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87

49 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87

50 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87

51 Linked List Advantages (cont.)
Assume we have an array having 100,000 elements 25 75 10 33 49 29 87 Only 100,000 more to go!

52 Linked List Advantages (cont.)
Linked lists also waste less memory for large elements (records of information). Wasted memory is memory space in the data structure not used for data. In arrays, the wasted memory is the part of the array not being utilized. In linked lists, the wasted memory is the reference(pointer) in each node.

53 Linked List Advantages (cont.)
head Linked List Array

54 Accessing info head To access the info in the first node:
head.getData()

55 Accessing info (cont.) head To access the info in the second node:
head.getLink().getData()

56 Finding the Mercedes head
Mercedes Consider a linked list, where the info member (left half of blue box) is a CarType object We wish to find a Mercedes stored in one of the objects.

57 CarType Class public class CarType { private double price;
private int year; private String maker; public CarType(double price, int year, String maker) { this.price = price; this.year = year; this.maker = maker; } public double getPrice() { return price; public void setPrice(double price) { public int getYear() { return year; public void setYear(int year) { public String getMaker() { return maker; public void setMaker(String maker) { @Override public String toString() { return "CarType [price=" + price + ", year=" + year + ", maker=" + maker + "]"; public boolean equals(Object arg0) { if(arg0!=null){ if(arg0 instanceof CarType){ CarType other=(CarType)arg0; return maker.equals(other.maker); return false;

58 Finding the Mercedes (cont.)
head Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

59 Finding the Mercedes (cont.)
head Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

60 Finding the Mercedes (cont.)
head item maker: price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

61 Finding the Mercedes (cont.)
item head maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

62 Finding the Mercedes (cont.)
head item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

63 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

64 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

65 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

66 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

67 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes Loop repeats, walk moves through list CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

68 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

69 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink(); FOUND!

70 Finding the Mercedes (cont.)
head walk item maker: Mercedes price: year: Mercedes Loop stops walk points to the node containing Mercedes Can return walk.getData() to the client, so that the client can access data members, such as price

71 What if no Mercedes? The code we looked at assumes there is a Mercedes in the linked list The following slides show the error that will occur if Mercedes is not in the linked list…

72 No Mercedes item head walk maker: Mercedes price: year: …
CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

73 No Mercedes (cont.) item head walk maker: Mercedes price: year: …
CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

74 No Mercedes (cont.) item head walk maker: Mercedes price: year: …
CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

75 No Mercedes (cont.) item head walk maker: Mercedes price: year: …
CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

76 No Mercedes (cont.) item head walk maker: Mercedes price: year: …
CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

77 No Mercedes (cont.) item head walk is set to null maker: Mercedes
price: year: CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

78 No Mercedes (cont.) item head walk is set to null maker: Mercedes
price: year: CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink();

79 No Mercedes (cont.) item head walk is set to null maker: Mercedes
price: year: CarType item=new CarType(…….); item.setMaker(“Mercedes”); Node<CarType> walk = head; while ( ! walk.getData().equals(item ) ) walk=walk.getLink(); Runtime error! Since walk is null .equals method can not be invoked.

80 Finding a Possible Mercedes
head item maker: Mercedes price: year: Let’s solve the problem, but let’s assume that item is passed in as a parameter (of type DataType). This is normally what would happen.

81 Finding a Possible Mercedes (cont.)
head item maker: Mercedes price: year: Node<CarType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); }

82 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) // overloaded == found = true; if ( !found ) walk = walk.getNext(); }

83 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) // overloaded == found = true; if ( !found ) walk = walk.getNext(); }

84 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

85 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

86 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

87 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

88 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

89 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

90 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false Notice that found is only set to true if Mercedes is found …

91 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false then, !found is false and the loop exits

92 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false If Mercedes is not found, ptr eventually gets set to null, as before.

93 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false After going through the loop several times…

94 Finding a Possible Mercedes (cont.)
head walk item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

95 Finding a Possible Mercedes (cont.)
head walk is set to null item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

96 Finding a Possible Mercedes (cont.)
head walk is set to null item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

97 Finding a Possible Mercedes (cont.)
head walk is set to null item maker: Mercedes price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false Exit from loop with no runtime error

98 Another Case What if the linked list is empty to begin with?
Try to consider all possible cases When a linked list is empty, the head reference(pointer) should always be set to null The head reference(pointer) would be set to null inside the constructor, when an empty linked list is first made

99 Empty List Case item head is set to null maker: Mercedes price: year:
Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); }

100 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } SAME CODE

101 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); }

102 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: walk is set to null Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); }

103 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: walk is set to null Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); }

104 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: walk is set to null Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

105 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: operator == walk is set to null Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false

106 Empty List Case (cont.) item head is set to null maker: Mercedes
price: year: operator == walk is set to null Node<DataType> walk = head; bool found = false; while (walk != null && !found ) { if ( walk.getData().equals( item ) ) found = true; if ( !found ) walk = walk.getNext(); } found: false Exit loop without runtime error

107 Inserting a New Node Let’s assume that we want to insert a new node at the beginning of a linked list Assume that the client passes in a parameter called element (of type DataType) We would like to place the element into a node and insert the node at the beginning of the linked list

108 Inserting a Node element head

109 Inserting a Node (cont.)
element head All new nodes must be made in the heap, SO…

110 Inserting a Node (cont.)
element head Node<DataType> ptr = new Node<DataType>();

111 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>();

112 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); Now we have to store element into the node

113 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

114 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

115 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

116 Inserting a Node (cont.)
element head Now we have to think about how to make the reference(pointer) called “next” point to the first node in the list, to link it in ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

117 Inserting a Node (cont.)
element head You can’t successfully write code like this without thinking about addresses. ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

118 Inserting a Node (cont.)
element head REMEMBER…when you want to change the way a reference(pointer) points, you HAVE to assign a different address to it ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

119 Inserting a Node (cont.)
element head Right now, the reference(pointer) called “next” doesn’t have a valid address assigned to it. ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

120 Inserting a Node (cont.)
element head To store the correct address in it, we have to find the address of the first node of the linked list. ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

121 Inserting a Node (cont.)
element head Where is the address of the first node stored? ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

122 Inserting a Node (cont.)
element head Now think, the address would be stored in something that points to it. So where is it stored? ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

123 Inserting a Node (cont.)
element head ptr That’s right, in the head reference(pointer). Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

124 Inserting a Node (cont.)
element head So now, all we have to do is copy that address into the reference(pointer) called “next” ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

125 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element);

126 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

127 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

128 Inserting a Node (cont.)
element head Well, it’s been inserted. But head should point to the first node now. ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

129 Inserting a Node (cont.)
element head REMEMBER…when you want to change the way a reference(pointer) points, you have to assign a different address to it ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

130 Inserting a Node (cont.)
element head We’d like head to point to the new node, so what stores the address of the new node? ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

131 Inserting a Node (cont.)
element head That’s right, ptr. So now all we have to do is assign the address stored in ptr to the head reference(pointer). ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

132 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head);

133 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head); head=ptr;

134 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head); head=ptr;

135 Inserting a Node (cont.)
element head ptr Node<DataType> ptr = new Node<DataType>(); ptr.setData(element); ptr.setNext( head); head=ptr;

136 REMEMBER… Always use drawings when working with linked lists, until you become an expert When you want to change the way a reference(pointer) points, you have to assign a different address to it You can find the address you need by looking at other reference(pointer)s (remember that they store addresses)

137 Inserting into the Middle (between nodes) of a Linked List
Suppose we know that there is a Mercedes in a linked list We would like to insert a node containing Honda right after it We first find the Mercedes, using code that we looked at before

138 Inserting a Node head element maker: Mercedes price: year: …
Node<DataType> ptr = head; while ( ptr.getData.equals(element) ) // element is a parameter ptr = ptr.getNext();

139 Inserting a Node (cont.)
head element maker: Mercedes price: year: Mercedes After this code executes, ptr points to the node that has Mercedes. Node<DataType> ptr = head; while ( ptr.getData.equals(element) ) // element is a parameter ptr = ptr.getNext();

140 Inserting a Node (cont.)
head element ptr maker: Mercedes price: year: Mercedes After this code executes, ptr points to the node that has Mercedes. Node<DataType> ptr = head; while ( ptr.getData.equals(element) ) // element is a parameter ptr = ptr.getNext();

141 Inserting a Node (cont.)
head element ptr maker: Mercedes price: year: Mercedes Now we would like to insert a CarType object called elementToInsert (containing Honda), which would also be passed in as a parameter, right after the Mercedes

142 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 Mercedes elementToInsert

143 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 operator != Mercedes elementToInsert Well, all new nodes are created in the heap, SO…..

144 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 operator != Mercedes elementToInsert (object of Car Type) First create a new Node for new Data Node<DataType> newNode = new Node<DataType>(elementToInsert);

145 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 Mercedes elementToInsert newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

146 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 Mercedes elementToInsert newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

147 Inserting a Node (cont.)
head ptr maker: Honda price: 5000 year: 1985 Mercedes elementToInsert newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

148 Inserting a Node (cont.)
head ptr Mercedes newNode Node<DataType> *newNode = new Node<DataType>; newNode->info = elementToInsert;

149 Inserting a Node (cont.)
head ptr Now, what we want is shown by the dashed arrows; this would cause the insertion of the node Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

150 Inserting a Node (cont.)
head ptr We have two reference(pointer)s we need to change – but we have to be careful about the way we change them Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

151 Inserting a Node (cont.)
head ptr If we change the left reference(pointer) first, we will no longer be able to access the last node (memory leak) Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

152 Inserting a Node (cont.)
head ptr So, we first have to assign the address of the last node into the “next” reference(pointer) of the new node Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

153 Inserting a Node (cont.)
head ptr Where is the address of the last node stored? Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

154 Inserting a Node (cont.)
head ptr That’s right, it is stored in ptr.next Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert);

155 Inserting a Node (cont.)
head ptr Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert); newNode.setNext( ptr.getNext());

156 Inserting a Node (cont.)
head ptr Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert); newNode.setNext( ptr.getNext());

157 Inserting a Node (cont.)
head ptr Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert); newNode.setNext( ptr.getNext()); ptr.setNext (newNode);

158 Inserting a Node (cont.)
head ptr Mercedes Mercedes newNode Node<DataType> newNode = new Node<DataType>(elementToInsert); newNode.setNext( ptr.getNext()); ptr.setNext (newNode);

159 Removing a Node Suppose we definitely know there is a Mercedes in the linked list and we wish to remove the node that contains it We need to find the node first

160 Removing a Node (cont.) head Mercedes

161 Removing a Node (cont.) ptr head Mercedes

162 Removing a Node (cont.) ptr head …
Mercedes When it is found, we need to join the node in front of it to the node after it.

163 Removing a Node (cont.) ptr head …
Mercedes When it is found, we need to join the node in front of it to the node after it.

164 Removing a Node (cont.) ptr head …
Mercedes But how can we access the “next” reference(pointer) of the node in front, so we can change the address it stores? (we can’t)

165 Removing a Node (cont.) ptr head …
Mercedes The way to solve the problem is by having ptr stop on the node BEFORE the node that has Mercedes

166 Removing a Node (cont.) ptr head Mercedes

167 Removing a Node (cont.) ptr head Mercedes

168 Removing a Node (cont.) ptr head …
Mercedes If ptr stops here, then we CAN change the address stored in the “next” reference(pointer). So we have to set up a loop appropriately.

169 Removing a Node (cont.) head Mercedes

170 Removing a Node (cont.) head … element contains Mercedes
Node<DataType> walk = head; Node <DataType>prev=null; while (walk!= null ) && (walk.getData().equals(element) { prev=walk; walk=walk.getNext(); }

171 Removing a Node (cont.) head …
Mercedes passed in from the client as a parameter Node<DataType> walk = head; Node <DataType>prev=null; while (walk!= null ) && (walk.getData().equals(element) { prev=walk; walk=walk.getNext(); }

172 Removing a Node (cont.) head …
Mercedes BUT…what if Mercedes is in the first node?

173 Removing a Node (cont.) head …
Mercedes BUT…what if Mercedes is in the first node? We need to handle the first node differently.

174 Removing a Node (cont.) head Mercedes

175 Removing a Node (cont.) head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head.getData().equals( element ) ) head = head.getNext();

176 Removing a Node (cont.) head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

177 Removing a Node (cont.) ptr head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

178 Removing a Node (cont.) ptr head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

179 Removing a Node (cont.) ptr head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

180 Removing a Node (cont.) ptr head … Node<DataType> ptr = head;
Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

181 Removing a Node (cont.) ptr head … Node<DataType> ptr = head;
Well, head points to the beginning of the new linked list, node pointed by ptr will be göne to garbage ptr head Mercedes Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

182 Removing a Node (cont.) ptr head

183 Removing a Node (cont.) ptr head … Now, let’s consider the other case.
Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext();

184 Removing a Node (cont.) head … Mercedes
Node<DataType> ptr = head; if ( head!=null && head.getData().equals( element ) ) head = head.getNext(); else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); }

185 Removing a Node (cont.) head … Mercedes
This is the loop that we thought of before. else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); }

186 Removing a Node (cont.) head … Mercedes
It will find the node BEFORE the node that has Mercedes. else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); }

187 Removing a Node (cont.) walk prev head … Mercedes
It will find the node BEFORE the node that has Mercedes. prev walk head Mercedes else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); }

188 Removing a Node (cont.) walk prev head …
Mercedes Now we need to join the node before Mercedes to the node after Mercedes else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); }

189 Removing a Node (cont.) walk prev head … Mercedes else {
while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

190 Removing a Node (cont.) walk prev head … Mercedes else {
while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

191 Removing a Node (cont.) walk prev head … Mercedes else {
while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

192 Removing a Node (cont.) walk prev head … Mercedes else {
while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

193 Removing a Node (cont.) walk prev head … Mercedes
else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext(); But how will we free the node that has Mercedes? No: Garbage Collector will handle it

194 Removing a Node (cont.) walk prev head … else {
while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

195 What If? What if Mercedes is the last node in the linked list
Would our code still work? Try to consider every possible situation in code design

196 Removing the Last Node walk prev head …
Mercedes After looping, ptr stops on the next-to-the-last node else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext();

197 Removing the Last Node (cont.)
prev walk head Mercedes else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext(); //will disconnect last node from linked list

198 Removing the Last Node (cont.)
walk prev head Mercedes Java garbage collector will remove last node else { while ( walk!=null && !walk.getData().equals(element ) ){ prev=walk; walk = walk.getNext(); } if(walk!=null) //if target is found prev.setNext(walk.getNext(); //will disconnect last node from linked list

199 Removing the Last Node (cont.)
prev head The code works in removing the last node.

200 Working With Linked Lists
As you can see, sometimes you have to do a lot of thinking and problem-solving when working with linked lists It is not always obvious how to write code You can’t memorize the code, because it will not quite fit situations that you will encounter It is a matter of using logic (and knowing a few tricks of the trade)

201 Code for Removing a Node
Here is the resulting code for removing a node. It is assumes the node we are looking for is in the linked list.

202 Code for Removing a Node (cont.)
This code can be simplified by using a dummy head node A header node is like any other node, except it doesn’t contain data. Since we know the first node doesn’t contain data, it can’t contain Mercedes.

203 Removing a Node But this code assumes that there definitely is a Mercedes in the linked list Let’s refine it a little Suppose we are not really sure if there is a Mercedes in the linked list to delete Or suppose the linked list is empty to begin with Always try to handle every case

204 Refining Code with Header Node

205 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next->info != element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; We’ll use our found variable, like before.

206 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next->info != element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; This will give us a runtime error if we have an empty list. Let’s test for it in a loop heading.

207 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next->info != element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; We’ll make a new loop and shove this part inside.

208 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null ) { while ( ptr->next->info != element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; }

209 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null ) { while ( ptr->next->info != element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; } Now we want the removal code if ptr->next->info IS equal to element

210 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null ) { if ( ptr->next->info == element ) ptr = ptr->next; Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; } Now we want the removal code if ptr->next->info IS equal to element

211 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null ) { if ( ptr->next->info == element ) { Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; }

212 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null ) { if ( ptr->next->info == element ) { Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; } If we remove a node, we need to break out of the loop.

213 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null && !found ) { if ( ptr->next->info == element ) { Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; found = true; } If we remove a node, we need to break out of the loop.

214 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null && !found ) { if ( ptr->next->info == element ) { Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; found = true; } Now, we just need to advance ptr if we didn’t remove a node.

215 Refining Code with Header Node (cont.)
Node<DataType> *ptr = head; bool found = false; while ( ptr->next != null && !found ) { if ( ptr->next->info == element ) { Node<DataType> *ptr2 = ptr->next; ptr->next = ptr2->next; delete ptr2; found = true; } if ( !found ) ptr = ptr->next; Final result.

216 Linked List vs. Arrays When computer scientists decide on whether or not to use an array or linked list for data, the decision is usually based on two factors: Speed Conservation of Memory (RAM)

217 Speed In some situations, an array can be faster than a linked list, such as when a calculated index is used to access an element In other situations, a linked list can be faster than an array, such as when removing an element from the middle (as we saw before) we usually need to search for the element to remove, but we search for it in both the array and linked list


Download ppt "CENG 218 Classes and Data Structures"

Similar presentations


Ads by Google