Presentation is loading. Please wait.

Presentation is loading. Please wait.

The story of superconcentrators The missing link

Similar presentations


Presentation on theme: "The story of superconcentrators The missing link"— Presentation transcript:

1 The story of superconcentrators The missing link
Michal Koucký Institute of Mathematics, Prague

2 Computational complexity
How much computational resources do we need to compute various functions. (time, space, etc.) Upper bounds (algorithms). Lower bounds.

3 Lower bound techniques
We have very little understanding of actual computation. Diagonalization. Gödel, Turing, … Information theory. Shannon, Kolmogorov, … Other special techniques – random restrictions, approximation by polynomials. Ajtai, Sipser, Razborov, …

4 Integer Addition n+1 bits c=a+b b a n bits

5 Circuits y y2 … yn yn Output depth d Input x1 … … xi xm gates are of arbitrary fan-in and may compute arbitrary Boolean functions. size of circuit = number of wires.

6 Circuits vs Turing machines
polynomial size circuits ~ polynomial time computation Open: Exponential time computation cannot be simulated by polynomial size circuits.

7 Integer Addition n+1 bits c=a+b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 Integer Addition n+1 bits c=a+b 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0

9 Integer Addition n+1 bits c=a+b 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0

10 Integer Addition n+1 bits c=a+b 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0

11 Integer Addition n+1 bits c=a+b 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

12 Integer Addition n+1 bits c=a+b 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0

13 Connectivity property
c=a+b b a X For any two interleaving sets X and Y, where X are inputs a and Y are outputs c there are |X|=|Y| vertex disjoint paths between X and Y in any circuit computing integer addition.

14 Superconcentrators [Valiant’75]
Y Out = f(X,Y) In X For any k, any X, and any Y, |X|=|Y|=k f(X,Y) = k  Can be built using O(n) wires. Oooopss!

15 Relaxed superconcentrators [Dolev et al.’83]
Y Out d = f(X,Y) In X For any k, random X, and random Y, |X|=|Y|=k EX,Y[f(X,Y)] ≥ δk  Fixed depth requires superlinear number of wires!

16 Bounds on relaxed superconcetrators [Dolev, Dwork, Pippinger, and Wigderson ’83, Pudlák’92]
depth d circuits size Ω(…) d= n log n d= n log log n d=2k or d=2k+1 n λk(n) where λ1(n) = log n and λk+1(n) = λk*(n) Applications [Chandra, Fortune, and Lipton ’83]

17 Depth-1 circuits for Prefix-XOR
y y … yn yn      x … x2 xn → total size Θ(n2) Prefix-XOR: yk = x1  x2  …  xk-1  xk

18 Depth-2 circuits for Prefix-XOR
y … yj … yn Output n n/2i 1 Input x1 … … xi xn Each middle block computes n/2i parities of input blocks of size 2i i=1, …, log n → the total size is O(n log n)

19 Variants of superconcetrators
For any k, sets X, Y where |X|=|Y|=k any X and any Y f(X,Y) = k (≥ δk) superconcetrators any X and random Y EY[f(X,Y)] ≥ δk middle ground random X and random Y EX,Y[f(X,Y)] ≥ δk relaxed superconcetrators

20 Comparison of depth-d superconcentrators
d= size Θ(…) superconcentrators n (log n)2/log log n middle ground n (log n/log log n)2 relaxed superconcentrators n log n d=2k or d=2k+1 all variants n λk(n) where λ1(n) = log n and λk+1(n) = λk*(n)

21 Good error-correcting codes
0<ρ,δ<1 constants, m < n: enc : {0,1}m → {0,1}n For any x, x’  {0,1}m, where x  x’ distHam(enc(x),enc(x’)) ≥ δn. m ≥ ρn. Applications: zillions

22 Connectivity of circuits computing codes
Out = f(X,Y) In X For any k, any X, and randomly chosen Y, |X|=|Y|=k EY[f(X,Y)] ≥ δk [Gál, Hansen, K., Pudlák, Viola ‘12]

23 Comparison of depth-d superconcentrators
d= size Θ(…) superconcentrators n (log n)2/log log n middle ground n (log n/log log n)2 relaxed superconcentrators n log n d=2k or d=2k+1 all variants n λk(n) where λ1(n) = log n and λk+1(n) = λk*(n)

24 Single output functions
X y (c*ac*b)*c* [K. Pudlák, and Thérien ’05]  circuits must contain relaxed superconcentrators

25 Recent improvements Explicit functions (matrix multiplication) [ Cherukhin ‘08, Jukna ’10, Drucker ‘12] depth d circuits size Ω(…) d= n3/2 d= n log n d= n log log n d=2k+1 or d=2k+2 n λk(n) where λ1(n) = log n and λk+1(n) = λk*(n)

26 Conclusions Information theory is the strongest lower bound tool we currently have (unfortunately).

27


Download ppt "The story of superconcentrators The missing link"

Similar presentations


Ads by Google