Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 3. Day 3..

Similar presentations


Presentation on theme: "Unit 3. Day 3.."— Presentation transcript:

1 Unit 3. Day 3.

2 Please get out paper for today’s lesson
Name Date Period Topic: Practice with Equivalent Expressions Use properties of operations to generate equivalent expressions

3 Today’s Lesson 1) Practice with Expressions
2) Legality of Math Equations 3) 6th Grade Solving 4) 7th Grade Solving

4 Commercial Break #1 2 2𝑥 ∙ 𝑥 3𝑥 4 3 4 3 4 𝑥 3 4𝑥 1 ∙ 𝑥 1 7 1 1 1 7 𝑥
𝑥 7 𝑥 7 𝑥

5 Commercial Break #1 5𝑛 6 5 6 𝑛 − 7𝑚 8 − 7 8 𝑚 1𝑎 2 1 2 𝑎 𝑎 2

6 Example A: Rewrite the expressions by collecting like terms
2 3 𝑥 2 3 𝑥− 3 4 𝑦+4𝑥− 𝑦 5 + 5𝑥 6 − 3 4 𝑦 + 5𝑥 6 − 𝑦 5 + 4𝑥 11 2 𝑥 − 𝑦 2 3 𝑥 𝑥 𝑥 − 3 4 𝑦 − 1 5 𝑦 15 6 𝑥 𝑥 𝑥 4 24 5 33 11 2 𝑥 − 20 𝑦− 20 𝑦 4 − 𝑦 = 6 𝑥 = =

7 Example B*: Rewrite the expressions by collecting like terms
5 8 − 𝑛 6 +3𝑛−1 3 4 − 3 2 𝑛 5 8 − 1 3 4 − 𝑛 6 − 3 2 𝑛 + 3𝑛 − 9 8 − 9 8 4 3 𝑛 4 3 𝑛 + + 5 8 − 7 4 − 1 6 𝑛 𝑛 − 3 2 𝑛 8 8 − 8 5 14 − 6 𝑛 𝑛 − 6 𝑛 1 18 6 𝑛 −9 9 = 8 =

8

9 Commercial Break #2 2𝑥 3 2𝑥+5 3 5 3 + 8 11 − 5𝑦 11 8−5𝑦 11

10 Commercial Break #2 8𝑥 − 6 8𝑥−6 12 8𝑥 12 −6 12 12 12 8 12 𝑥 − 6 12
2 3 𝑥 − 1 2

11 Example C: Rewrite the following expression in standard form
2 3𝑥−4 6 − 5𝑥+2 8 4 6 − 5𝑥+2 8 6𝑥 − 8 3 4 3 24𝑥−32 24𝑥 −32 15𝑥+6 15𝑥 + 6 24 − −15𝑥 −6 9𝑥 −38 9𝑥 24 38 24 3 8 𝑥 − 19 12 24𝑥 −32 24 = 24 = =

12 Example D*: Rewrite the following expression in standard form
2 5𝑔−1 4 − 2𝑔+3 6 3 2 4 − 2𝑔+3 6 10𝑔 − 2 3 2 30𝑔−6 30𝑔 −6 4𝑔+6 4𝑔 + 6 12 − −4𝑔 −6 26𝑔 −12 26𝑔 12 −6 12 12 13 6 𝑔 30𝑔 = 12 = 12 = −1

13

14 Today’s Lesson 1) Practice with Expressions
2) Legality of Math Equations 3) 6th Grade Solving 4) 7th Grade Solving

15 Q: What is an equation? A: A math “sentence” with an equal sign
3𝑥 + 4 = 78 3 5−𝑥 =6−3𝑥 5=2+3 6 𝑥+5 =7−9𝑚 𝑥+4=2−13.9

16 4 = 4 6 = 6 3 = 3 15 = 15 5 = 5 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑡𝑟𝑢𝑒? 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒?
Legality of Math Equations 4 = 4 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑡𝑟𝑢𝑒? +2 +2 6 = 6 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? −3 −3 5 5 3 = 3 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? 15 = 15 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? 3 3 5 = 5 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒?

17 8 = 8 4 = 4 2 = 2 7 = 7 49 = 49 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑡𝑟𝑢𝑒? 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒?
Legality of Math Equations 8 = 8 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑡𝑟𝑢𝑒? 2 2 4 = 4 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? 2 = 2 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? +5 +5 7 = 7 2 2 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒? 49 = 49 𝐼𝑠 𝑡ℎ𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑡𝑟𝑢𝑒?

18

19 Today’s Lesson 1) Practice with Expressions
2) Legality of Math Equations 3) 6th Grade Solving 4) 7th Grade Solving

20 CCSS.MATH.CONTENT.6.EE.B.7 Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers. 𝑥+𝑝 =𝑞 𝑝𝑥=𝑞 𝑥+4 =7 3𝑥 =12 𝑥 = 7 8 1 2 𝑥 = 6 5

21 𝑝𝑥+𝑞 =𝑟 𝑝𝑥=𝑞 1 𝑥−4 =7 3𝑥 =−12 3 𝑥+0 =−12 −2 𝑥−7 =5 3𝑥+4 =−8
CCSS.MATH.CONTENT.7.EE.B.4.A Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. 𝑝𝑥+𝑞 =𝑟 𝑝𝑥=𝑞 1 𝑥−4 =7 3𝑥 =−12 3 𝑥+0 =−12 −2 𝑥−7 =5 3𝑥+4 =−8 1 2 𝑥− =− 1 5 − 5 6 𝑥 =− 1 4

22 𝑥+4 = 7 𝑥+4 = 7 𝑥 = 3 𝑥 𝑥+4 = 7 = + −4 −4 Example 6th: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑥. +
Check: +4=7 3 𝑥+4 = 7 𝑥+4 = 7 𝑥 = + 3 7=7 −4 −4 𝑥 𝑥+4 = 7 = + + + + + + + + + + +

23 Example 6th: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑦. 𝑦 = 3 8 2 8 𝑦 = − 1 8 − 1 8 1 4

24 Example 6th: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 w. 1 4𝑤=24 𝑤 = 6 4 4 Check =24 6 24=24

25 Example 6th: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑛 . 3 4 𝑛= 9 10 𝑛 = 3 4 3 4 9 10 ÷ 3 4 𝑛= 15 4 9 10 4 3 36 30 6 5 = =

26

27 Today’s Lesson 1) Practice with Expressions
2) Legality of Math Equations 3) 6th Grade Solving 4) 7th Grade Solving

28 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. 𝑎 =− 1 5 Example E*: 𝑛 − = 1 3 Example F*:

29 Example E*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑎. 𝑎 =− 1 5 − 3 5 𝑎 = − 2 5 − 2 5

30 Example F*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑛. 𝑛 − = 1 3 5 9 𝑛 = + 2 9 + 2 9

31 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 −15+𝑏=−4 Example G*: −31=𝑑−6 Example H*:

32 −15+𝑏=−4 𝑏 = 11 +15 +15 Example G*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑏. Check: −15+ =−4 11
− =−4 11 −15+𝑏=−4 +15 −4=−4 +15 𝑏 = 11

33 −31=𝑑−6 −25 = 𝑑 +6 +6 Example H*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑑. Check: −31= −6 −25
−31= −6 −25 −31=𝑑−6 +6 −31=−31 +6 −25 = 𝑑

34 Example I: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑝. −2𝑚=−16 𝑚 = 8 −2 −2 Check − =−16 8 −16=−16

35 2 7 𝑥 = 5 ∙ 𝑥 = 5 ÷ 2 7 𝑥 = 1 ∙ 𝑥 = 5 ∙ 1 𝑥 = = Example J: 2 7 2 7 2 7
35 2 5 1 7 2 35 2 𝑥 = =

36 − 1 3 𝑚 =8 − 2 3 𝑛 =8 −𝑝 =−7 Example K*: Example L*: Example M*:
Solve for the variable − 1 3 𝑚 =8 Example K*: − 2 3 𝑛 =8 Example L*: Example M*: −𝑝 =−7

37 − 1 3 𝑚 =8 ∙ 𝑚 = 8 1 − 3 𝑚 =8 ÷ 1 𝑚 = = −3 −3 − 1 3 − 1 3 − 1 3 𝑚 =
Example K*: 𝑚 = 8 −3 1 −3 3 𝑚 =8 ÷ − 1 3 − 1 3 − 1 3 𝑚 = −24 1 8 1 − 3 1 − 24 1 𝑚 = =

38 − 2 3 𝑛 =8 ∙ 𝑛 = 8 ÷ − 2 3 𝑥 = 1 ∙ 𝑥 = 8 ∙ 1 𝑛 = = Example L*: − 2 3
− 3 2 − 3 2 𝑥 = 8 − 24 2 1 8 1 − 3 2 − 24 2 𝑛 = = = −12

39 Example M*: − 𝑝 =−7 1𝑝 1 = 7 −1 −1 𝑝

40 Example N: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 x. 3 1 𝑥 3 𝑥 3 = 9 27 𝑥÷3=9 = Or 1 3 𝑥 = 9 1𝑥 3 = 9 𝑥 3 = 9 1 3 1 3 9 1 1 3 3 1 27 1 𝑥 = ÷ = 27


Download ppt "Unit 3. Day 3.."

Similar presentations


Ads by Google