Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spring 2016 Program Analysis and Verification

Similar presentations


Presentation on theme: "Spring 2016 Program Analysis and Verification"— Presentation transcript:

1 Spring 2016 Program Analysis and Verification
Lecture 5: Axiomatic Semantics III Roman Manevich Ben-Gurion University

2 Tentative syllabus Program Verification Program Analysis Basics
Operational semantics Hoare Logic Applying Hoare Logic Weakest Precondition Calculus Proving Termination Data structures Program Analysis Basics Control Flow Graphs Equation Systems Collecting Semantics Using Soot Abstract Interpretation fundamentals Lattices Fixed-Points Chaotic Iteration Galois Connections Domain constructors Widening/ Narrowing Analysis Techniques Numerical Domains Alias analysis Interprocedural Analysis Shape Analysis CEGAR

3 Previously Hoare logic Weakest precondition calculus
Inference system Annotated programs Soundness and completeness Weakest precondition calculus Strongest postcondition calculus

4 Weakest (liberal) precondition rules
wlp(skip, Q) = Q wlp(x := a, Q) = Q[a/x] wlp(S1; S2, Q) = wlp(S1, wlp(S2, Q)) wlp(if b then S1 else S2, Q) = (b  wlp(S1, Q))  (b  wlp(S2, Q)) wlp(while b do {} S, Q) =  where {b  } S {} and b    Q Inv  ((Inv  b)  wp(S, Inv))  ((Inv  b)  Q) Parameterized by the loop invariant Inv

5 Strongest postcondition rules
sp(skip, P) = P sp(x := a, P) = v. x=a[v/x]  P[v/x] sp(S1; S2, P) = sp(S2, sp(S1, P)) sp(if b then S1 else S2, P) = sp(S1, b  P)  sp(S2, b  P) sp(while b do {} S, P) =   b where {b  } S {} and P  b   Inv  ((Inv  b)  wp(S, Inv))  ((Inv  b)  Q) Parameterized by the loop invariant Inv

6 Warm-up

7 Proof of swap by WP { y=b  x=a }
t := x { y=b  t=a } x := y { x=b  t=a } y := t { x=b  y=a }

8 Prove swap via SP { y=b  x=a }
t := x { } x := y { } y := t { x=b  y=a }

9 Prove swap via SP { y=b  x=a }
t := x { v. t=x  y=b  x=a } x := y { v. x=y  t=v  y=b  v=a } { x=y  y=b  v. t=v  v=a } { x=y  y=b  t=a } y := t { v. y=t  x=v  v=b  t=a } { y=t  t=a  v. x=v  v=b } { y=t  t=a  x=b } { x=b  y=a } Quantifier elimination (a very trivial one) Quantifier elimination Quantifier elimination

10 Proof of absolute value via WP
{ x=v } { (-x=|v|  x<0)  (x=|v|  x0) } if x<0 then { -x=|v| } x := -x { x=|v| } else { x=|v| } skip { x=|v| } { x=|v| }

11 Prove absolute value by SP
{ x=v } { } if x<0 then { } x := -x { } else { } skip { } { } { x=|v| }

12 Proof of absolute value via SP
{ x=v } if x<0 then { x=v  x<0 } x := -x { w. x=-w  w=v  w<0 } { x=-v  v<0 } else { x=v  x0 } skip { x=v  x0 } { x=-v  v<0  x=v  x0 } { x=|v| }

13 Agenda Some useful rules Extension for memory Proving termination

14 Making the proof system more practical

15 { P } S { Q } { P’ } S { Q’ } { P  P’ } S {Q  Q’ }
Conjunction rule { P } S { Q } { P’ } S { Q’ } { P  P’ } S {Q  Q’ } [conjp] Allows breaking up proofs into smaller, easier to manage, sub-proofs

16 More useful rules [Invp]
Breaks if C is non-deterministic { P } C { Q } { P’ } C { Q’ } { P  P’ } C {Q  Q’ } [disjp] { P } C { Q } { v. P } C { v. Q } [existp] vFV(C) { P } C { Q } {v. P } C {v. Q } [univp] vFV(C) { F } C { F } Mod(C)  FV(F)={} [Invp] Mod(C) = set of variables assigned to in sub-statements of C FV(F) = free variables of F

17 Invariance + Conjunction = Constancy
{ P } C { Q } { F  P } C { F  Q } [constancyp] Mod(C)  FV(F)={} Mod(C) = set of variables assigned to in sub-statements of C FV(F) = free variables of F

18 Strongest postcondition calculus practice
By Vadim Plessky ( [see page for license], via Wikimedia Commons

19 Floyd’s strongest postcondition rule
{ P } x := a { v. x=a[v/x]  P[v/x] } where v is a fresh variable [assFloyd] The value of x in the pre-state Example { z=x } x:=x+1 { ? }

20 Floyd’s strongest postcondition rule
{ P } x := a { v. x=a[v/x]  P[v/x] } where v is a fresh variable [assFloyd] meaning: {x=z+1} Example { z=x } x:=x+1 { v. x=v+1  z=v } This rule is often considered problematic because it introduces a quantifier – needs to be eliminated further on We will now see a variant of this rule

21 “Small” assignment axiom
First evaluate a in the precondition state (as a may access x) Create an explicit Skolem variable in precondition Then assign the resulting value to x [assfloyd] { x=v } x:=a { x=a[v/x] } where vFV(a) Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [existp] {n. x=n} x:=y+1 {n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancyp] {z=9} x:=y+1 {z=9  x=y+1}

22 “Small” assignment axiom
[assfloyd] { x=v } x:=a { x=a[v/x] } where vFV(a) Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [existp] {n. x=n} x:=y+1 {n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancyp] {z=9} x:=y+1 {z=9  x=y+1}

23 “Small” assignment axiom
[assfloyd] { x=v } x:=a { x=a[v/x] } where vFV(a) Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [existp] {n. x=n} x:=y+1 {n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancyp] {z=9} x:=y+1 {z=9  x=y+1}

24 “Small” assignment axiom
[assfloyd] { x=v } x:=a { x=a[v/x] } where vFV(a) Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [existp] {n. x=n} x:=y+1 {n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancyp] {z=9} x:=y+1 {z=9  x=y+1}

25 Prove using strongest postcondition
{ x=a  y=b } t := x x := y y := t { x=b  y=a }

26 Prove using strongest postcondition
{ x=a  y=b } t := x { x=a  y=b  t=a } x := y y := t { x=b  y=a }

27 Prove using strongest postcondition
{ x=a  y=b } t := x { x=a  y=b  t=a } x := y { x=b  y=b  t=a } y := t { x=b  y=a }

28 Prove using strongest postcondition
{ x=a  y=b } t := x { x=a  y=b  t=a } x := y { x=b  y=b  t=a } y := t { x=b  y=a  t=a } { x=b  y=a } // cons

29 Prove using strongest postcondition
{ x=v } if x<0 then { x=v  x<0 } x := -x { x=-v  x>0 } else { x=v  x0 } skip { x=v  x0 } { v<0  x=-v  v0  x=v } { x=|v| }

30 Prove using strongest postcondition
{ x=v } if x<0 then { x=v  x<0 } x := -x { x=-v  x>0 } else { x=v  x0 } skip { x=v  x0 } { v<0  x=-v  v0  x=v } { x=|v| }

31 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – specify { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { ? } x := 0 res := 0 while (x<y) do x := x res := res+x { ? } Background axiom

32 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – specify { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 res := 0 while (x<y) do x := x res := res+x { res = Sum(0, y) } Background axiom

33 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 res := 0 Inv = while (x<y) do x := x res := res+x { res = Sum(0, y) }

34 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 Inv = while (x<y) do x := x+1 res := res+x { res = Sum(0, y) }

35 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = while (x<y) do x := x+1 res := res+x { res = Sum(0, y) }

36 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do x := x+1 res := res+x { res = Sum(0, y) }

37 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do { y0  res=m  x=n  ny  m=Sum(0, n)  x<y } { y0  res=m  x=n  m=Sum(0, n)  n<y } x := x res := res+x { res = Sum(0, y) }

38 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do { y0  res=m  x=n  ny  m=Sum(0, n)  x<y } { y0  res=m  x=n  m=Sum(0, n)  n<y } x := x { y0  res=m  x=n+1  m=Sum(0, n)  n<y } res := res+x { res = Sum(0, y) }

39 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do { y0  res=m  x=n  ny  m=Sum(0, n)  x<y } { y0  res=m  x=n  m=Sum(0, n)  n<y } x := x { y0  res=m  x=n+1  m=Sum(0, n)  n<y } res := res+x { y0  res=m+x  x=n+1  m=Sum(0, n)  n<y } { y0  res=Sum(0, x)  x=n+1  n<y } // sum axiom { y0  res=Sum(0, x)  xy } // cons { res = Sum(0, y) }

40 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Sum program – prove { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do { y0  res=m  x=n  ny  m=Sum(0, n)  x<y } { y0  res=m  x=n  m=Sum(0, n)  n<y } x := x { y0  res=m  x=n+1  m=Sum(0, n)  n<y } res := res+x { y0  res=m+x  x=n+1  m=Sum(0, n)  n<y } { y0  res=Sum(0, x)  x=n+1  n<y } // sum axiom { y0  res=Sum(0, x)  xy } // cons { y0  res=Sum(0, x)  xy  xy } { y0  res=Sum(0, y)  x=y } { res = Sum(0, y) }

41 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }
Buggy sum program 1 { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Define Sum(0, n) = 0+1+…+n { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x)  xy } while (x<y) do { y0  res=m  x=n  ny  m=Sum(0, n)  x<y } { y0  res=m  x=n  m=Sum(0, n)  n<y } res := res+x { y0  res=m+x  x=n  m=Sum(0, n)  n<y } x := x { y0  res=m+n  x=n+1  m=Sum(0, n)  n<y } { y0  res=Sum(0, n)+n  x=n+1  n<y }  { y0  res=Sum(0, x)  xy } // cons { y0  res=Sum(0, x)  xy  xy } { y0  res=Sum(0, y)  x=y } { res = Sum(0, y) }

42 Buggy sum program 2 { y0 } x := 0 { y0  x=0 } res := 0 { y0  x=0  res=0 } Inv = { y0  res=Sum(0, x) } = { y0  res=m  x=n  m=Sum(0, n) } while (xy) do { y0  res=m  x=n  m=Sum(0, n)  xy  ny } x := x { y0  res=m  x=n+1  m=Sum(0, n)  ny} res := res+x { y0  res=m+x  x=n+1  m=Sum(0, n)  ny} { y0  res-x=Sum(0, x-1)  ny} { y0  res=Sum(0, x) } { y0  res=Sum(0, x)  x>y }  {res = Sum(0, y) }

43 Handling data structures

44 Problems with Hoare logic and heaps
{ P[a/x] } x := a { P } Consider the annotated program { y=5 } y := 5; { y=5 } x := &y; { y=5 } *x := 7; { y=5 } Is it correct? The rule works on a syntactic level unaware of possible aliasing between different terms (y and *x in our case)

45 Problems with Hoare logic and heaps
{ P[a/x] } x := a { P } {(x=&y  z=5)  (x&y  y=5)} *x = z; { y=5 } What should the precondition be?

46 Problems with Hoare logic and heaps
{ P[a/x] } x := a { P } {(x=&y  z=5)  (x&y  y=5)} *x = z; { y=5 } We split into cases depending on possible aliasing

47 Problems with Hoare logic and heaps
{ P[a/x] } x := a { P } {(x=&y  z=5)  (x&y  y=5)} *x = z; { y=5 } What should the precondition be? Joseph M. Morris: A General Axiom of Assignment A different approach: heaps as arrays Really successful approach for heaps is based on Separation Logic Employed by Dafny

48 Axiomatizing data types
S ::= x := a | x := y[a] | y[a] := x | skip | S1; S2 | if b then S1 else S2 | while b do S We added a new type of variables – array variables Model array variable as a function y : Z  Z Re-define program states State = Define operational semantics x := y[a],   y[a] := x,  

49 Axiomatizing data types
S ::= x := a | x := y[a] | y[a] := x | skip | S1; S2 | if b then S1 else S2 | while b do S We added a new type of variables – array variables Model array variable as a function y : Z  Z We need the two following axioms: { y[xa](x) = a } { zx  y[xa](z) = y(z) }

50 Array update rules (wlp)
S ::= x := a | x := y[a] | y[a] := x | skip | S1; S2 | if b then S1 else S2 | while b do S A very general approach – allows handling many data types Treat an array assignment y[a] := x as an update to the array function y y := y[ax] meaning y’=v. v=a ? x : y(v) [array-update] { P[y[ax]/y] } y[a] := x { P } [array-load] { P[y(a)/x] } x := y[a] { P }

51 Array update rules (wlp) example
Treat an array assignment y[a] := x as an update to the array function y y := y[ax] meaning y’=v. v=a ? x : y(v) [array-update] { P[y[ax]/y] } y[a] := x { P } {x=y[i7](i)} y[i]:=7 {x=y(i)} {x=7} y[i]:=7 {x=y(i)} [array-load] { P[y(a)/x] } x := y[a] { P } {y(a)=7} x:=y[a] {x=7}

52 Array update rules (sp)
{ P } x := y[a] { v. x=y(a[v/x])  P[v/x] } [array-loadF] { y=g  P } y[a1] := a2 { y=g[a1[g/y]a2[g/y]] } [array-updateF]

53 Small array update rules (sp)
[array-loadF] { y=g  a=b } x := y[a] { x=g(b) } In both rules v, g, and b are fresh [array-updateF] { x=v  y=g  a=b } y[a] := x { y=g[bv] }

54 practice proving programs with arrays

55 Array-max program – specify
nums : array N : int // N stands for num’s length { N0  nums=orig_nums } x := 0 res := nums[0] while x < N if nums[x] > res then res := nums[x] x := x + 1 { x=N } { m. (m0  m<N)  nums(m)res } { m. m0  m<N  nums(m)=res } { nums=orig_nums }

56 Array-max program nums : array N : int // N stands for num’s length { N0  nums=orig_nums } x := 0 res := nums[0] while x < N if nums[x] > res then res := nums[x] x := x + 1 Post1: { x=N } Post2: { nums=orig_nums } Post3: { m. 0m<N  nums(m)res } Post4: { m. 0m<N  nums(m)=res }

57 Proof strategy Prove each goal 1, 2, 3, 4 separately and use conjunction rule to prove them all After proving {N0} C {x=N} {nums=orig_nums} C {nums=orig_nums} We have proved {N0  nums=orig_nums} C {x=N  nums=orig_nums} We can refer to assertions from earlier proofs in writing new proofs

58 Array-max example: Post1
nums : array N : int // N stands for num’s length { N0 } x := 0 { N0  x=0 } res := nums[0] { x=0 } Inv = { xN } while x < N { x=k  k<N } if nums[x] > res then res := nums[x] { x=k  k<N } x := x { x=k+1  k<N } { xN  xN } { x=N } Use frame rule

59 Array-max example: Post2
nums : array N : int // N stands for num’s length { nums=orig_nums } x := 0 res := nums[0] while x < N if nums[x] > res then res := nums[x] { nums=orig_nums } Use frame rule

60 Array-max example: Post3
nums : array { N0  0m<N } // N stands for num’s length x := 0 { x=0 } res := nums[0] { x=0  res=nums(0) } Inv = { 0m<x  nums(m)res } while x < N { x=k  res=oRes  0m<k  nums(m)oRes } if nums[x] > res then { nums(x)>oRes  res=oRes  x=k  0m<k  nums(m)oRes } res := nums[x] { res=nums(x)  nums(x)>oRes  x=k  0m<k  nums(m)oRes } { x=k  0mk  nums(m)<res } { (x=k  0m<k  nums(m)<res)  (res≥nums(x)  x=k  res=oRes  0m<k  nums(m)oRes)} { x=k  0m<k  nums(m)res } x := x { x=k+1  0mx-1  nums(m)res } { 0m<x  nums(m)res } { x=N  0m<x  nums(m)res} [univp]{ m. 0m<N  nums(m)res }

61 Proving termination By Noble0 (Own work) [CC BY-SA 3.0 ( via Wikimedia Commons

62 Total correctness semantics for While
[ P[a/x] ] x := a [ P ] [assp] [ P ] skip [ P ] [skipp] [ P ] S1 [ Q ], [ Q ] S2 [ R ] [ P ] S1; S2 [ R ] [compp] [ b  P ] S1 [ Q ], [ b  P ] S2 [ Q ] [ P ] if b then S1 else S2 [ Q ] [ifp] [whilep] [ P(z+1) ] S [ P(z) ] [ z. P(z) ] while b do S [ P(0) ] P(z+1)  b P(0)  b [ P’ ] S [ Q’ ] [ P ] S [ Q ] [consp] if PP’ and Q’Q

63 Total correctness semantics for While
[ P[a/x] ] x := a [ P ] [assp] [ P ] skip [ P ] [skipp] [ P ] S1 [ Q ], [ Q ] S2 [ R ] [ P ] S1; S2 [ R ] [compp] [ b  P ] S1 [ Q ], [ b  P ] S2 [ Q ] [ P ] if b then S1 else S2 [ Q ] [ifp] Rank, or Loop variant [whilep] [ b  P  t=k ] S [ P  t<k ] [ P ] while b do S [ b  P ] P  t0 [ P’ ] S [ Q’ ] [ P ] S [ Q ] [consp] if PP’ and Q’Q

64 Proving termination There is a more general rule based on well-founded relations Partial orders with no infinite strictly decreasing chains Exercise: write a rule that proves only that a program S, started with precondition P terminates [ ] S [ ]

65 Proving termination There is a more general rule based on well-founded relations Partial orders with no infinite strictly decreasing chains Exercise: write a rule that proves only that a program S, started with precondition P terminates [ P ] S [ true ]

66 Array-max – specify termination
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ ? ] while x < N if nums[x] > res then res := nums[x] x := x + 1 [ ? ]

67 Array-max – specify termination
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ N-x ] while x < N [ ? ] if nums[x] > res then res := nums[x] x := x [ ? ] [ true ]

68 Array-max – prove loop variant
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x<N  N-x=k  N-x0 ] if nums[x] > res then res := nums[x] x := x // [ N-x<k  N-x0 ] [ true ]

69 Array-max – prove loop variant
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x00 ] if nums[x] > res then res := nums[x] x := x // [ N-x<k  N-x0 ] [ true ] Capture initial value of x, since it changes in the loop

70 Array-max – prove loop variant
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x00 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x00 ] // Frame x := x // [ N-x<k  N-x0 ] [ true ]

71 Array-max – prove loop variant
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x00 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x00 ] // Frame x := x + 1 [ x=x0+1  x0<N  N-x0=k  N-x00 ] // [ N-x<k  N-x0 ] [ true ]

72 Array-max – prove loop variant
nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x00 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x00 ] // Frame x := x + 1 [ x=x0+1  x0<N  N-x0=k  N-x00 ] [ N-x<k  N-x0 ] // cons [ true ]

73 Zune calendar bug while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } } else { days -= 365;

74 Fixed code while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } else { days -= 365;

75 Fixed code – specify termination
[ ? ] while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } else { days -= 365;

76 Fixed code – specify variant
[ true ] Variant = [ ? ] while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } else { days -= 365; [ ? ]

77 Fixed code – proving termination
[ true ] Variant = [ t=days ] while (days > 365) { [ days>365  days=k  days0 ] if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; [ false ] } else { days -= 365; // [ days0  days<k ] Let’s model break by a small cheat – assume execution never gets past it

78 Fixed code – proving termination
[ true ] Variant = [ t=days ] while (days > 365) { [ days0  k=days  days>365 ] -> [ days0  k=days  days>365 ] if (IsLeapYear(year)) { [ k=days  days>365 ] if (days > 366) { [ k=days  days>365  days>366 ] -> [ k=days  days>366 ] days -= 366; [ days=k-366  days>0 ] year += 1; } else { [ k=days  days>365  days366 ] break; [ false ] [ (days=k-366  days>0)  false ] -> [ days<k  days>0 ] } else { days -= 365; [ k-365=days  days-365>365 ] -> [ k-365=days  days0 ] -> [ days<k  days0 ] [ days<k  days0 ]

79 Challenge: proving non-termination
Write a rule for proving that a program does not terminate when started with a precondition P Prove that the buggy Zune calendar program does not terminate { b  P } S { b } { P } while b do S { false } [while-ntp]

80 conclusion

81 Extensions to axiomatic semantics
Assertions for execution time Exact time Order of magnitude time Assertions for dynamic memory Separation Logic Assertions for parallelism Owicki-Gries Concurrent Separation Logic Rely-guarantee

82 Axiomatic verification conclusion
Very powerful technique for reasoning about programs Sound and complete Extendible Static analysis can be used to automatically synthesize assertions and loop invariants

83 See you next time


Download ppt "Spring 2016 Program Analysis and Verification"

Similar presentations


Ads by Google