Download presentation
Presentation is loading. Please wait.
1
Chapter 5 Expectations 主講人:虞台文
2
Content Introduction Expectation of a Function of a Random Variable
Expectation of Functions of Multiple Random Variables Important Properties of Expectation Conditional Expectations Moment Generating Functions Inequalities The Weak Law of Large Numbers and Central Limit Theorems
3
Chapter 5 Expectations Introduction
4
有夢最美
5
有夢最美
6
Definition Expectation
The expectation (mean), E[X] or X, of a random variable X is defined by:
7
Definition Expectation
The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e.,
8
Definition Expectation
有些隨機變數不存在期望值。 若存在則為一常數。 Definition Expectation The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e.,
9
Example 1 Let X denote #good components in the experiment.
10
Example 2
11
Example 3 驗證此為一正確之pdf
12
Example 3
13
Expectation of a Function of a Random Variable
Chapter 5 Expectations Expectation of a Function of a Random Variable
14
The Expectation of Y=g(X)
15
The Expectation of Y=g(X)
16
Example 4
17
Example 5
18
Moments 某些g(X)吾人特感興趣 第k次動差 第k次中央動差 第ㄧ次動差謂之均數(mean)
第二次中央動差謂之變異數(variance)
19
均數、變異數與標準差 X :為標準差
20
X ~ B(n, p) E[X]=? Var[X]=? Example 6
21
X ~ B(n, p) E[X]=? Var[X]=? Example 6
22
X ~ B(n, p) E[X]=? Var[X]=? Example 6
23
X ~ Exp() E[X]=? Var[X]=? Example 7
24
Summary of Important Moments of Random Variables
25
Expectation of Functions of Multiple Random Variables
Chapter 5 Expectations Expectation of Functions of Multiple Random Variables
26
The Expectation of Y = g(X1, …, Xn)
27
Example 8 p(x, y) X Y
28
Example 9
29
Important Properties of Expectation
Chapter 5 Expectations Important Properties of Expectation
30
Linearity E1. 常數之期望值為常數 E2. X1, X2, …, Xn間不須具備任何條件,上項特性均成立。
31
Example 10 令X與Y為兩連續型隨機變數,證明E[X+Y] = E[X]+E[Y].
32
A Question 令X與Y為兩連續型隨機變數,證明E[X+Y] = E[X]+E[Y]. ?
33
Independence E3. If random variables X1, . . ., Xn are independent, then
34
Example 11 令X與Y為兩獨立之連續型隨機變數,證明E[XY] = E[X]E[Y].
35
A Question 令X與Y為兩獨立之連續型隨機變數,證明E[XY] = E[X]E[Y]. X Y ?
36
Example 12 X Y
37
A Question ?
38
Define The Variance of Sum
39
The Variance of Sum
40
The Covariance 差積之期望值
41
The Covariance
42
Example 13
43
A Question X Y ?
44
Properties Related to Covariance
45
Properties Related to Covariance
Fact:
46
Properties Related to Covariance
47
Example 14
48
Example 14
49
More Properties on Covariance
50
More Properties on Covariance
51
Example 16
52
Example 16
53
Example 16
54
Theorem 1 Schwartz Inequality
55
Theorem 1 Schwartz Inequality
Pf) 求ㄧ=*使E具有最小值 令
56
Theorem 1 Schwartz Inequality
Pf)
57
Theorem 1 Schwartz Inequality
Pf)
58
Corollary E10. Pf)
59
Correlation Coefficient
60
Correlation Coefficient
Fact: E11. Is the converse also true?
61
Correlation Coefficient
Pf)
62
Example 18
63
Example 18
64
Example 18
65
X: # Y: # 2 Example 19
66
X: # Y: # 2 Example 19 Method 1: X Y p(x, y)
67
X: # Y: # 2 Example 19 Method 2: Facts:
68
Conditional Expectations
Chapter 5 Expectations Conditional Expectations
69
Definition Conditional Expectations
70
Facts a function of X (x) E13. See text for the proof
71
Conditional Variances
72
Example 20
73
Moment Generating Functions
Chapter 5 Expectations Moment Generating Functions
74
Moment Generating Functions
動差母函數 Moment Generating Functions Moments Moments
75
Moment Generating Functions
The moment generating function MX(t) of a random variable X is defined by The domain of MX(t) is all real numbers such that eXt has finite expectation.
76
Example 21
77
Example 22
78
Summary of Important Moments of Random Variables
79
Moment Generating Functions
為何MX(t) 會生動差? Moment Generating Functions The moment generating function MX(t) of a random variable X is defined by The domain of MX(t) is all real numbers such that eXt has finite expectation.
80
Moment Generating Functions
81
Moment Generating Functions
k 2 1
82
Moment Generating Functions
k 2 1
83
Moment Generating Functions
84
Example 23 Using MGF to find the means and variances of
85
Example 23
86
Example 23
87
Example 23
88
Example 23
89
Correspondence or Uniqueness Theorem
Let X1, X2 be two random variables.
90
Example 24
91
Example 24
92
Example 24
93
Example 24
94
Example 24
95
Theorem Linear Translation
Pf)
96
Theorem Convolution . . . Pf)
97
. . . Example 25
98
. . . Example 25
99
. . . Example 25
100
. . . Example 25
101
. . . Example 25
102
Example 26
103
Example 26
104
Example 26
105
Theorem of Random Variables’ Sum
106
Theorem of Random Variables’ Sum
We have proved the above five using probability generating functions. They can also be proved using moment generating functions.
107
Theorem of Random Variables’ Sum
表何意義?
108
Theorem of Random Variables’ Sum
109
Theorem of Random Variables’ Sum
表何意義?
110
Theorem of Random Variables’ Sum
111
Theorem of Random Variables’ Sum
112
Theorem of Random Variables’ Sum
表何意義?
113
Theorem of Random Variables’ Sum
114
Theorem of Random Variables’ Sum
115
Chapter 5 Expectations Inequalities
116
Theorem Markov Inequality
Let X be a nonnegative random variable with E[X] = . Then, for any t > 0, 僅知一次動差對機率値之評估
117
Theorem Markov Inequality
Define A discrete random variable Why?
118
Theorem Markov Inequality
Define A discrete random variable
119
Example 27 MTTF Mean Time To Failure
120
Example 27 東方不敗,但精確性差 MTTF Mean Time To Failure By Markov
By Exponential Distribution
121
Theorem Chebyshev's Inequality
知一次與二次動差對機率値之評估
122
Theorem Chebyshev's Inequality
123
Theorem Chebyshev's Inequality
Facts:
124
Theorem Chebyshev's Inequality
Facts:
125
Example 28
126
Example 28 此君必然上榜
127
The Weak Law of Large Numbers and Central Limit Theorems
Chapter 5 Expectations The Weak Law of Large Numbers and Central Limit Theorems
128
The Parameters of a Population
We may never have the chance to know the values of parameters in a population exactly.
129
Sample Mean iid random variables A population Sample Mean
iid: identical independent distributions A population Sample Mean
130
Expectation & Variance of
A population
131
Expectation & Variance of
A population
132
Expectation & Variance of
A population
133
Theorem Weak Law of Large Numbers
Let X1, …, Xn be iid random variables having finite mean .
134
Theorem Weak Law of Large Numbers
Chebyshev's Inequality Theorem Weak Law of Large Numbers Let X1, …, Xn be iid random variables having finite mean .
135
Central Limit Theorem Let X1, …, Xn be iid random variables having finite mean and finite nonzero variance 2.
136
Central Limit Theorem Let X1, …, Xn be iid random variables having finite mean and finite nonzero variance 2.
137
Central Limit Theorem
138
Central Limit Theorem
139
Central Limit Theorem =0 as n
140
Central Limit Theorem 當時n分子分母均趨近0
141
Central Limit Theorem 分子分母均對n微分一次
142
Central Limit Theorem
143
Central Limit Theorem
144
Central Limit Theorem Let X1, …, Xn be iid random variables having finite mean and finite nonzero variance 2.
145
Normal Approximation By the central limit theorem, when a sample size is sufficiently large (n > 30), we can use normal distribution to approximate certain probabilities regarding to the sample or the parameters of its corresponding population.
146
Example 29 n > 30 Let Xi represent the lifetime of ith bulb
We want to find n > 30
147
Example 30 n > 30
148
Example 30 20 20.5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.