Download presentation
Presentation is loading. Please wait.
Published byBeverly Greene Modified over 5 years ago
1
Automatic Classification of Plankton from Digital Images
M Sieracki1, E Riseman2, W Balch1, M Benfield3, A Hanson2, C Pilskaln1, H Schultz2, C Sieracki4, P Utgoff2, M Blaschko2, G Holness2, M Mattar2, D Lisin2, B Tupper1 Bigelow Laboratory for Ocean Science1 Computer Vision Lab, U. Mass. Amherst Louisiana State University Fluid Imaging Technologies4 Marine particles, including plankton and non-living particles, play important roles in ecosystem function and material flux in the oceans. Digital imaging technology used in instruments to study these particles can rapidly produce huge archives of images that require expert interpretation. Automated methods to assist the expert interpret these images are urgently needed. We are building automatic classifier systems to work with the experts to efficiently and accurately classify images of marine particles. We will use images from in-situ camera instruments (e.g. VPR) for zooplankton and marine snow, an imaging-in-flow system (FlowCAM) for phytoplankton, and digital fluorescence microscopy for pico- and nanoplankton. Experiments were conducted using low resolution FlowCAM images of 13 classes of phytoplankton from natural communities, and a variety of image features and classifiers, including classifier ensembles. These preliminary tests yielded classification accuracy of over 70%, compared to published human expert agreement of about 80%. This indicates that automated classification will be practical to automate the majority of images. We intend to develop a probabilistic approach to particle enumeration, and to test the generality of our classifiers across instrument types. Texture Features Gaussian Differential Co-occurrence Local point features Shape Features Perimeter, Area, Moments, Contour, Convexity, Symmetry Features Classification Methods K-Nearest Neighbors Decision Trees Naïve Bayes Ridge Regression Support Vector Machines Sample Expert Classified Image Sets 1 Video Plankton Recorder (VPR) Test Image Sets Label 1 Experts manually classify particles 2 FlowCAM Imaging-in-flow Label 2 3 Epifluorescence Microscopy Label 3 Conclusions Combinations of shape and texture features performed best Support Vector Machine classifier performed best Best accuracy was 73%, approaching consistency rate of human experts (80%) Preliminary Results for FlowCAM Images Experiments 980 expert labeled FlowCAM images 780 total features 5 classifiers used Future Work Apply to other image types, more expert classified image sets Automated feature selection 3D FlowCAM (dual aspect angle images) Experiments with local image features Software tools for experts Ensemble Classifier Results
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.