Download presentation
Presentation is loading. Please wait.
1
Chi-Squared Distribution
Multinomial Distribution - Qualitative Data (Nominal) k - Classes Class … k p1 p2 p3 p4 … pk Population Proportions pj Proportion of All Observations in the jth Class ∑pj = 1 foj = Observed Number in jth Class in a Sample of Size N fej = Expected Number in jth Class based upon pj fej = N•pj
2
Example 1: Favorite Ice Cream (Rule of 5: fe ≥5)
Van Choc Straw N fo fe Van Choc Straw N fo fe
3
Example 2: Business Major
BUSA ACCT MKTG Other N fo fe H0: BUSA:ACCT:MKTG:Other=8:3:3:6 HA; Ratio Not 8:3:3:6 R:
4
Example 3: Gender of Business Majors
Male Female N H0: pM=.60 pF=.40 fo HA: pM≠.60 pF≠.40 fe R: Binomial: Test Population Proportion
5
Goodness of Fit for a Distribution
"Fair Die" = Uniform Distribution N fo fe H0: Die Fits Uniform Distribution HA: Die Does Not Fit Uniform Distribution R:
6
Goodness of Fit for Exam Scores to a Normal Distribution
Score fo Z pj fe (fo - fe) χ2 17 - <26 9 26 - <32 7 32 - <38 16 38 Exam: Mean = 32, Std Dev = 6
7
Contingency Tables - Cross-Tabulation of Nominal Data (X-Tabs)
Want to Test for the Independence of 2 Categorical Factors Factor 1 1 2 3 …. c Sum 1 f11 f12 f13 … f1c R1 2 f21 f22 f23 … f2c R2 3 f31 f32 f33 … f3c R3 Factor 2 … … … … … … … r fr1 fr2 fr3 … frc Rr Sum C1 C2 C3 … Cc N Independence - P(A and B) = P(A)•P(B) p11=pR1•pC1=(R1/N)(C1/N) fe11=N•p11=N(R1/N)(C1/N)=(R1•C1)/N
8
Example 6: Income vs Cookie Mix
Cookie <30K K >60K Total Pre-Mix Mix Own Total H0: Independence HA: Dependence R:
9
Ex 7: Product Use Don't Use Non-Athletic Athletic H0: Indep HA: Dep R: Compare 2 Pop Proportions: Ath Non-Ath n x
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.