Download presentation
Presentation is loading. Please wait.
1
Introducing Powers © T Madas
2
A power is a shorthand for writing a number multiplied by itself
2 5 x 5 2 times = 5 5 to the power of 2 5 squared 5 multiplied by itself © T Madas
3
A power is a shorthand for writing a number multiplied by itself
THIS IS NOT 5 x 2 2 5 x 5 = 5 © T Madas
4
A power is a shorthand for writing a number multiplied by itself
2 8 x 8 2 times = 8 8 to the power of 2 8 squared 8 multiplied by itself © T Madas
5
A power is a shorthand for writing a number multiplied by itself
2 6 x 6 2 times = 6 6 to the power of 2 6 squared 6 multiplied by itself © T Madas
6
A power is a shorthand for writing a number multiplied by itself
3 5 x 5 x 5 3 times = 5 5 to the power of 3 5 cubed 5 multiplied by itself © T Madas
7
A power is a shorthand for writing a number multiplied by itself
3 9 x 9 x 9 3 times = 9 9 to the power of 3 9 cubed 9 multiplied by itself © T Madas
8
A power is a shorthand for writing a number multiplied by itself
7 x 7 x 7 x 7 = 74 7 to the power of 4 2 x 2 x 2 x 2 x 2 = 25 2 to the power of 5 11 to the power of 2 11 squared 11 x 11 = 112 1.2 x 1.2 x 1.2 = 1.23 1.2 to the power of 3 1.2 cubed © T Madas
9
The Square Numbers 1, 4, 9, 16, 25, 36, … 12 22 32 42 52 62 … © T Madas
10
© T Madas
11
23 + 42 = 43 – 62 = 53 + 24 – 102 = 8 + 16 = 64 – 36 = 125 + 16 – 100 = 24 28 41 3 x 42 = 6 x 52 = 23 x 32 = 3 x 16 = 6 x 25 = 8 x 9 = 48 150 72 42 x 52 = 24 + 3 x 52 = 16 x 25 = 16 + 3 x 25 = 400 16 + 75 = 91 © T Madas
12
Carry out the following substitutions:
x = 3 2x 2 = 2 x 32 = 2 x 9 = 18 x = 2 4x 3 = 4 x 23 = 4 x 8 = 32 x = 3 (2x )2 = ( 2 x 3 ) 2 = 6 2 = 36 x = 5 2x 2 + 3x = 2 x 52 + 3 x 5 = 2 x 25 + 15 = 65 © T Madas
13
© T Madas
14
Calculate the following powers:
32 = 3 x 3 = 9 62 = 6 x 6 = 36 52 = 5 x 5 = 25 53 = 5 x 5 x 5 = 125 23 = 2 x 2 x 2 = 8 43 = 4 x 4 x 4 = 64 33 = 3 x 3 x 3 = 27 13 = 1 x 1 x 1 = 1 42 = 4 x 4 = 16 112 = 11 x 11 = 121 82 = 8 x 8 = 64 24 = 2 x 2 x 2 x 2 = 16 © T Madas
15
Calculate the following powers:
102 = 10 x 10 = 100 1002 = 100 x 100 = 10000 92 = 9 x 9 = 81 132 = 13 x 13 = 169 23 = 2 x 2 x 2 = 8 202 = 20 x 20 = 400 33 = 3 x 3 x 3 = 27 103 = 10 x 10 x 10 = 1000 72 = 7 x 7 = 49 152 = 15 x 15 = 225 122 = 12 x 12 = 144 34 = 3 x 3 x 3 x 3 = 81 © T Madas
16
Calculate the following powers:
0.22 = 0.2 x 0.2 = 0.04 0.52 = 0.5 x 0.5 = 0.25 1.22 = 1.2 x 1.2 = 1.44 1.52 = 1.5 x 1.5 = 2.25 0.72 = 0.7 x 0.7 = 0.49 0.53 = 0.5 x 0.5 x 0.5 = 0.125 0.43 = 0.4 x 0.4 x 0.4 = 0.064 © T Madas
17
© T Madas
18
Calculate the following powers:
32 = 3 x 3 = 9 62 = 6 x 6 = 36 52 = 5 x 5 = 25 53 = 5 x 5 x 5 = 125 23 = 2 x 2 x 2 = 8 43 = 4 x 4 x 4 = 64 33 = 3 x 3 x 3 = 27 13 = 1 x 1 x 1 = 1 42 = 4 x 4 = 16 112 = 11 x 11 = 121 82 = 8 x 8 = 64 24 = 2 x 2 x 2 x 2 = 16 © T Madas
19
Calculate the following powers:
102 = 10 x 10 = 100 1002 = 100 x 100 = 10000 92 = 9 x 9 = 81 132 = 13 x 13 = 169 23 = 2 x 2 x 2 = 8 202 = 20 x 20 = 400 33 = 3 x 3 x 3 = 27 103 = 10 x 10 x 10 = 1000 72 = 7 x 7 = 49 152 = 15 x 15 = 225 122 = 12 x 12 = 144 34 = 3 x 3 x 3 x 3 = 81 © T Madas
20
Calculate the following powers:
0.22 = 0.2 x 0.2 = 0.04 0.52 = 0.5 x 0.5 = 0.25 1.22 = 1.2 x 1.2 = 1.44 1.52 = 1.5 x 1.5 = 2.25 0.72 = 0.7 x 0.7 = 0.49 0.53 = 0.5 x 0.5 x 0.5 = 0.125 0.43 = 0.4 x 0.4 x 0.4 = 0.064 © T Madas
21
© T Madas
22
Evaluate the following:
= 9 + 8 = 17 = 125 + 4 = 129 42 – 23 = 16 – 8 = 8 82 – 72 = 64 – 49 = 15 = 9 + 16 = 25 = 64 + 8 = 72 52 – 22 = 25 – 4 = 21 62 – 32 = 36 – 9 = 27 = 9 + 9 = 18 = 32 + 8 = 40 33 – 23 = 27 – 8 = 19 53 – 52 = 125 – 25 = 100 = 16 + 8 = 24 = 81 + 8 = 89 © T Madas
23
Evaluate the following:
= 16 + 8 = 24 = 125 + 9 = 134 52 – 23 = 25 – 8 = 17 92 – 72 = 81 – 49 = 32 = 36 + 16 = 52 = 64 + 27 = 91 72 – 32 = 49 – 9 = 40 102 – 32 = 100 – 9 = 91 = 16 + 16 = 32 = 64 + 8 = 72 33 – 24 = 27 – 16 = 11 43 – 42 = 64 – 16 = 48 = 32 + 16 = 48 = 81 + 64 = 145 © T Madas
24
© T Madas
25
Evaluate the following:
= 9 + 8 = 17 = 125 + 4 = 129 42 – 23 = 16 – 8 = 8 82 – 72 = 64 – 49 = 15 = 9 + 16 = 25 = 64 + 8 = 72 52 – 22 = 25 – 4 = 21 62 – 32 = 36 – 9 = 27 = 9 + 9 = 18 = 32 + 8 = 40 33 – 23 = 27 – 8 = 19 53 – 52 = 125 – 25 = 100 = 16 + 8 = 24 = 81 + 8 = 89 © T Madas
26
Evaluate the following:
= 16 + 8 = 24 = 125 + 9 = 134 52 – 23 = 25 – 8 = 17 92 – 72 = 81 – 49 = 32 = 36 + 16 = 52 = 64 + 27 = 91 72 – 32 = 49 – 9 = 40 102 – 32 = 100 – 9 = 91 = 16 + 16 = 32 = 64 + 8 = 72 33 – 24 = 27 – 16 = 11 43 – 42 = 64 – 16 = 48 = 32 + 16 = 48 = 81 + 64 = 145 © T Madas
27
x2 x-1 x3 π . EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC ^ x! d/c RCL
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR © T Madas
28
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR 3 1 2 961 3 1 x2 = 312 = 961 © T Madas
29
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR 6 5 2 4225 6 5 x2 = 652 = 4225 © T Madas
30
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR . 7 6 2 0.5776 . 7 6 x2 = 0.762 = 0.5776 © T Madas
31
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR 1 3 . 2 ^ 3 2, 1 3 . 2 ^ 3 = 13.23 = © T Madas
32
. EXP Ans = 1 2 3 + – 4 5 6 x ÷ 7 8 9 DEL AC RCL ENG ( ) , M+ (–) . , ,, hyp sin cos tan a b/c x2 log ln x-1 nCr Pol( REPLAY ^ SHIFT ALPHA MODE ON x! nPr Rec( x3 d/c 10x ex sin-1 cos-1 tan-1 M- OFF STO π DRG› % Rnd Ran# A B C D E F X Y M ; e : CLR 2 1 . 9 ^ 4 230, 2 1 . 9 ^ 4 = 21.94 = © T Madas
33
© T Madas
34
Calculate the following powers:
152 = 225 162 = 256 182 = 324 172 = 289 222 = 484 7.52 = 56.25 282 = 784 322 = 1024 12.52 = 156.25 252 = 625 4.52 = 20.25 0.162 = 0.0256 © T Madas
35
Calculate the following powers:
55 = 3125 3052 = 93025 8.52 = 72.25 173 = 4913 123 = 1728 195 = 0.83 = 0.512 210 = 1024 2.12 = 4.41 = 1.952 = 3.8025 0.24 = 0.0016 © T Madas
36
Calculate the following powers:
45 = 1024 1512 = 22801 73 = 343 153 = 3375 113 = 1331 163 = 4096 84 = 4096 38 = 6561 56 = 15625 67 = 279936 94 = 6561 216 = 65536 © T Madas
37
© T Madas
38
Calculate the following powers:
152 = 225 162 = 256 182 = 324 172 = 289 222 = 484 7.52 = 56.25 282 = 784 322 = 1024 12.52 = 156.25 252 = 625 4.52 = 20.25 0.162 = 0.0256 © T Madas
39
Calculate the following powers:
55 = 3125 3052 = 93025 8.52 = 72.25 173 = 4913 123 = 1728 195 = 0.83 = 0.512 210 = 1024 2.12 = 4.41 = 1.952 = 3.8025 0.24 = 0.0016 © T Madas
40
Calculate the following powers:
45 = 1024 1512 = 22801 73 = 343 153 = 3375 113 = 1331 163 = 4096 84 = 4096 38 = 6561 56 = 15625 67 = 279936 94 = 6561 216 = 65536 © T Madas
41
© T Madas
42
16 25 34 43 52 61 16 61 52 25 43 34 Look at the six numbers below.
Put them in order of size starting with the smallest. Circle the three square numbers Explain why 36 is a square number 16 25 34 43 52 61 16 61 52 25 43 34 16 = 1 x 1 x 1 x 1 x 1 x 1 = 1 25 = 2 x 2 x 2 x 2 x 2 = 32 4 8 16 34 = 3 x 3 x 3 x 3 = 81 9 27 43 = 4 x 4 x 4 = 64 16 52 = 5 x 5 = 25 61 = 6 © T Madas
43
16 25 34 43 52 61 16 61 52 25 43 34 Look at the six numbers below.
Put them in order of size starting with the smallest. Circle the three square numbers Explain why 36 is a square number 16 25 34 43 52 61 16 61 52 25 43 34 36 = 3 x 3 x 3 x 3 x 3 x 3 = 27 x 27 © T Madas
44
© T Madas
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.