Download presentation
Presentation is loading. Please wait.
1
More Applications of The Pumping Lemma
2
The Pumping Lemma: For infinite context-free language there exists an integer such that for any string we can write with lengths and it must be:
3
Non-context free languages
4
Theorem: The language is not context free Proof: Use the Pumping Lemma for context-free languages
5
Assume for contradiction that
is context-free Since is context-free and infinite we can apply the pumping lemma
6
Pumping Lemma gives a magic number
such that: Pick any string of with length at least we pick:
7
We can write: with lengths and Pumping Lemma says: for all
8
We examine all the possible locations
of string in
9
Case 1: is within the first
10
Case 1: is within the first
11
Case 1: is within the first
12
Case 1: is within the first However, from Pumping Lemma:
Contradiction!!!
13
Case 2: is in the first is in the first
14
Case 2: is in the first is in the first
15
Case 2: is in the first is in the first
16
Case 2: is in the first is in the first However, from Pumping Lemma:
Contradiction!!!
17
Case 3: overlaps the first is in the first
18
Case 3: overlaps the first is in the first
19
Case 3: overlaps the first is in the first
20
Case 3: overlaps the first is in the first
However, from Pumping Lemma: Contradiction!!!
21
Case 4: in the first Overlaps the first Analysis is similar to case 3
22
Other cases: is within or or Analysis is similar to case 1:
23
More cases: overlaps or Analysis is similar to cases 2,3,4:
24
There are no other cases to consider
Since , it is impossible to overlap: nor nor
25
In all cases we obtained a contradiction
Therefore: The original assumption that is context-free must be wrong Conclusion: is not context-free
26
Non-context free languages
27
Theorem: The language is not context free Proof: Use the Pumping Lemma for context-free languages
28
Assume for contradiction that
is context-free Since is context-free and infinite we can apply the pumping lemma
29
Pumping Lemma gives a magic number
such that: Pick any string of with length at least we pick:
30
We can write: with lengths and Pumping Lemma says: for all
31
We examine all the possible locations
of string in There is only one case to consider
36
Since , for we have:
38
However, from Pumping Lemma:
Contradiction!!!
39
We obtained a contradiction
Therefore: The original assumption that is context-free must be wrong Conclusion: is not context-free
40
Non-context free languages
41
Theorem: The language is not context free Proof: Use the Pumping Lemma for context-free languages
42
Assume for contradiction that
is context-free Since is context-free and infinite we can apply the pumping lemma
43
Pumping Lemma gives a magic number
such that: Pick any string of with length at least we pick:
44
We can write: with lengths and Pumping Lemma says: for all
45
We examine all the possible locations
of string in
46
Most complicated case:
is in is in
48
Most complicated sub-case:
and
49
Most complicated sub-case:
and
50
Most complicated sub-case:
and
51
and
53
However, from Pumping Lemma:
Contradiction!!!
54
When we examine the rest of the cases
we also obtain a contradiction
55
In all cases we obtained a contradiction
Therefore: The original assumption that is context-free must be wrong Conclusion: is not context-free
56
Yet Another Compiler Compiler
YACC Yet Another Compiler Compiler
57
Yacc is a parser generator
Input: A Grammar Output: A parser for the grammar Reminder: a parser finds derivations
58
Example grammar: The yacc code: expr -> ( expr ) | expr '+' expr
| INT ; The yacc code: expr : '(' expr ')' | expr '+' expr | expr '-' expr | expr '*' expr | expr '/' expr | - expr | INT ;
59
Exampe Input: 10 * 3 + 4 Yacc Derivation: expr => expr + expr => expr * expr + expr => 10*3 + 4
60
Resolving Ambiguities
%left '+', '-' %left '*', '/' %left UMINUS %% expr : '(' expr ')' | expr '+' expr | expr '-' expr | expr '*' expr | expr '/' expr | '-' expr %prec UMINUS | INT ;
61
Actions %left '+', '-' %left '*', '/' %left UMINUS %%
expr : '(' expr ')' {$$ = $2;} | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {$$ = $1 / $3;} | '-' expr %prec UMINUS {$$ = -$2;} | INT {$$ = $1;} ;
62
A Complete Yacc program
%union{ int int_val; } %left '+', '-' %left '*', '/' %left UMINUS %token <int_val> INT %type <int_val> expr %start program %%
63
program : expr {printf("Expr value = %d \n", $1);}
| error {printf("YACC: syntax error near line %d \n", linenum); abort();} ; expr : '(' expr ')' {$$ = $2;} | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {$$ = $1 / $3;} | '-' expr %prec UMINUS {$$ = -$2;} | INT {$$ = $1;} %% #include "lex.yy.c"
64
Execution Example Input: *( ) Output: Expr value = 490
65
The Lex Code %{ int linenum=1; int temp_int; %} %% \n {linenum++;}
[\t ] /* skip spaces */; \/\/[^\n]* /* ignore comments */; "+" {return '+';} "-" {return '-';} "*" {return '*';} "/" {return '/';} ")" {return ')';} "(" {return '(';}
66
[0-9]+ {sscanf(yytext, "%d", &temp_int);
yylval.int_val = temp_int; return INT;} . {printf("LEX: unknown input string found in line %d \n", linenum); abort();}
67
Compiling: yacc YaccFile lex LexFile cc y.tab.c -ly -ll -o myparser Executable: myparser
68
Another Yacc Program %union{ int int_val; } %left '+', '-'
%left UMINUS %token <int_val> INT %type <int_val> expr %start program %%
69
program : stmt_list | error {printf("YACC: syntax error near line %d \n", linenum); abort();} ; stmt_list : stmt_list stmt | stmt stmt : expr ';' {printf("Expr value = %d \n", $1);}
70
expr : '(' expr ')' {$$ = $2;} | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {$$ = $1 / $3;} | '-' expr %prec UMINUS {$$ = -$2;} | INT {$$ = $1;} ; %% #include "lex.yy.c"
71
Execution Example Input: Output: 10 + 20*(30 -67) / 4;
34 * ; 17*8/6; Output: Expr value = -175 Expr value = 1066 Expr value = 22
72
Lex Code %{ int linenum=1; int temp_int; %} %% \n {linenum++;}
[\t ] /* skip spaces */; \/\/[^\n]* /* ignore comments */;
73
"+" {return '+';} "-" {return '-';} "*" {return '*';} "/" {return '/';} ")" {return ')';} "(" {return '(';} ";" {return ';';} [0-9]+ {sscanf(yytext, "%d", &temp_int); yylval.int_val = temp_int; return INT;} . {printf("LEX: unknown input string found in line %d \n", linenum); abort();}
74
Another Yacc Program %union{ int int_val; char *str_val; }
%left '+', '-' %left '*', '/' %left UMINUS %token PRINT %token NEWLINE %token <str_val> STRING %token <int_val> INT %type <int_val> expr %start program %%
75
program : stmt_list | error {printf("YACC: syntax error near line %d \n", linenum); abort();} ; stmt_list : stmt_list stmt | stmt stmt : expr ';' {printf("expression found\n");} | PRINT expr ';' {printf("%d", $2);} | PRINT STRING ';' {printf("%s", $2);} | PRINT NEWLINE ';' {printf("\n");}
76
expr : '(' expr ')' {$$ = $2;} | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {$$ = $1 / $3;} | '-' expr %prec UMINUS {$$ = -$2;} | INT {$$ = $1;} ; %% #include "lex.yy.c"
77
Execution Example Input: Output:
print "The value of expression 123 * 25 is "; print 123 * 25; print newline; * 8; print "end of program"; Output: The value of expression 123 * 25 is 3075 expression found end of program
78
Lex Code %{ int linenum=1; int temp_int; char temp_str[200]; %} %%
\n {linenum++;} [\t ] /* skip spaces */; \/\/[^\n]* /* ignore comments */;
79
"+" {return '+';} "-" {return '-';} "*" {return '*';} "/" {return '/';} ")" {return ')';} "(" {return '(';} ";" {return ';';} "print" {return PRINT;} "newline" {return NEWLINE;}
80
[0-9]+ {sscanf(yytext, "%d", &temp_int);
yylval.int_val = temp_int; return INT;} \"[^"\n]*\" {strncpy(temp_str, &(yytext[1]), strlen(yytext)-2); temp_str[strlen(yytext)-2] = (char) 0; yylval.str_val = temp_str; return STRING;} . {printf("LEX: unknown input string found in line %d \n", linenum); abort();}
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.