Download presentation
Presentation is loading. Please wait.
1
Further binomial Series expansion
2
Series KUS objectives BAT complete problems involving partial fractions followed by series expansion Starter: Write 𝑥 −2 , − 1 2 <𝑥< in ascending powers of x up to the term in 𝑥 2 Hence, find the expansion of 𝑥− 𝑥 up to the term in 𝑥 2 1+2𝑥 −2 =1 − 4𝑥+12 𝑥 2 +… 𝑥− 𝑥 = −3 + 13𝑥 − 40 𝑥 2 + …
3
Write 4−5𝑥 (1+𝑥)(2−𝑥) in partial fractions
WB10a matching coefficients Write 4−5𝑥 (1+𝑥)(2−𝑥) in partial fractions Hence, find the expansion of 4−5𝑥 (1+𝑥)(2−𝑥) up to and including the term in 𝑥 3 4−5𝑥 (1+𝑥)(2−𝑥) = 𝐴 1+𝑥 + 𝐵 2−𝑥 4−5𝑥 = 𝐴 2−𝑥 + 𝐵(1+𝑥) 𝐴= 𝐵=−2 4−5𝑥 (1+𝑥)(2−𝑥) = 3 1+𝑥 − 2 2−𝑥 Check by adding together! 4−5𝑥 (1+𝑥)(2−𝑥) = 3 1+𝑥 −1 −2 2−𝑥 −1
4
4−5𝑥 (1+𝑥)(2−𝑥) =3 1−𝑥+ 𝑥 2 − 𝑥 3 + … − 1+ 1 2 𝑥+ 1 4 𝑥 2 + 1 8 𝑥 3 +…
WB 10b b) Hence, find the expansion of 4−5𝑥 (1+𝑥)(2−𝑥) up to and including the term in 𝑥 3 𝟏+𝒂𝒙 𝒏 =𝟏+𝒏 𝒂𝒙 + 𝒏 𝒏−𝟏 𝟐! 𝒂𝒙 𝟐 + 𝒏 𝒏−𝟏 (𝒏−𝟐) 𝟑! 𝒂𝒙 𝟑 + … 4−5𝑥 (1+𝑥)(2−𝑥) = 3 1+𝑥 −1 −2 2−𝑥 −1 3 1+𝑥 −1 = −𝑥+ 𝑥 2 − 𝑥 3 + … 2 2−𝑥 −1 = 1− 1 2 𝑥 −1 = 𝑥 𝑥 𝑥 3 +… 4−5𝑥 (1+𝑥)(2−𝑥) =3 1−𝑥+ 𝑥 2 − 𝑥 3 + … − 𝑥 𝑥 𝑥 3 +… 4−5𝑥 (1+𝑥)(2−𝑥) =2− 7 2 𝑥 𝑥 2 − 𝑥 3 +…
5
Write 2𝑥+7 (𝑥+3)(𝑥+4) in partial fractions
WB11a a matching coefficients Write 2𝑥+7 (𝑥+3)(𝑥+4) in partial fractions Hence, find the expansion of 2𝑥+7 (𝑥+3)(𝑥+4) up to and including the term in 𝑥 3 2𝑥+7 (𝑥+3)(𝑥+4) = 𝐴 𝑥+3 + 𝐵 𝑥+4 2𝑥+7 = 𝐴 𝑥+4 + 𝐵(𝑥+3) 𝐴= 𝐵=1 2𝑥+7 (𝑥+3)(𝑥+4) = 1 𝑥 𝑥+4 Check by adding together! 2𝑥+7 (𝑥+3)(𝑥+4) = 𝑥+4 −1 + 𝑥+3 −1 = 4+𝑥 − 𝑥 −1
6
𝟏+𝒂𝒙 𝒏 =𝟏+𝒏 𝒂𝒙 + 𝒏 𝒏−𝟏 𝟐! 𝒂𝒙 𝟐 + 𝒏 𝒏−𝟏 (𝒏−𝟐) 𝟑! 𝒂𝒙 𝟑 + …
WB11b b) Hence, find the expansion of 2𝑥+7 (𝑥+3)(𝑥+4) up to and including the term in 𝑥 3 2𝑥+7 (𝑥+3)(𝑥+4) = 4+𝑥 − 𝑥 −1 4+𝑥 −1 = 𝑥 −1 = 1 4 1− 1 4 𝑥 𝑥 2 − 𝑥 3 +… 3+𝑥 −1 = 𝑥 −1 = 1 3 1− 1 3 𝑥 𝑥 2 − 𝑥 3 +… 2𝑥+7 (𝑥+3)(𝑥+4) = − 1 16 𝑥 𝑥 2 − 𝑥 3 +… + 1− 1 3 𝑥 𝑥 2 − 𝑥 3 +… Carefully collect the terms 2𝑥+7 (𝑥+3)(𝑥+4) = − 𝑥 𝑥 2 − 𝑥 3 +…
7
f x = 3 𝑥 2 +18 1−2𝑥 2+𝑥 2 = 𝐴 1−2𝑥 + 𝐵 2+𝑥 + 𝐶 2+𝑥 2 find A, B and C
WB12a f x = 3 𝑥 −2𝑥 2+𝑥 2 = 𝐴 1−2𝑥 + 𝐵 2+𝑥 + 𝐶 2+𝑥 find A, B and C Hence, find the expansion of 3 𝑥 (1−2𝑥) 2+𝑥 2 up to and including the term in 𝑥 3 3 𝑥 (1−2𝑥) 2+𝑥 2 = 𝐴 1−2𝑥 + 𝐵 2+𝑥 + 𝐶 2+𝑥 2 3 𝑥 2 +18= 𝐴 𝑥+4 + 𝐵(𝑥+3) 𝐴= 𝐵=0 𝐶=6 3 𝑥 (1−2𝑥) 2+𝑥 2 = 3 1−2𝑥 𝑥 2 Check by adding together! 3 𝑥 (1−2𝑥) 2+𝑥 2 =3 1−2𝑥 − 𝑥 −2 3 𝑥 (1−2𝑥) 2+𝑥 2 =3 1−2𝑥 − 𝑥 −2
8
𝟏+𝒂𝒙 𝒏 =𝟏+𝒏 𝒂𝒙 + 𝒏 𝒏−𝟏 𝟐! 𝒂𝒙 𝟐 + 𝒏 𝒏−𝟏 (𝒏−𝟐) 𝟑! 𝒂𝒙 𝟑 + …
WB13b b) Hence, find the expansion of 3 𝑥 (1−2𝑥) 2+𝑥 2 up to and including the term in 𝑥 3 3 𝑥 (1−2𝑥) 2+𝑥 2 =3 1−2𝑥 − 𝑥 −2 3 1−2𝑥 −1 = 3 1+2𝑥+4 𝑥 2 +8 𝑥 3 +… 𝑥 −2 = 3 2 1−𝑥 𝑥 2 − 1 2 𝑥 3 +… 3 𝑥 (1−2𝑥) 2+𝑥 2 = 3+6𝑥+12 𝑥 𝑥 3 +… − 3 2 𝑥 𝑥 2 − 3 4 𝑥 3 +… Carefully collect the terms 3 𝑥 (1−2𝑥) 2+𝑥 2 = 𝑥 𝑥 𝑥 3 +…
9
One thing to improve is –
KUS objectives BAT complete problems involving partial fractions followed by series expansion self-assess One thing learned is – One thing to improve is –
10
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.