Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 133 Electromagnetism

Similar presentations


Presentation on theme: "Physics 133 Electromagnetism"β€” Presentation transcript:

1 Physics 133 Electromagnetism
Electric Potential MARLON FLORES SACEDON

2 βˆ™ βˆ™ electric potential - What is Electric Potential?
An electric potential, the amount of work needed to move a unit charge from a reference point to a specific point against an electric field. From definition of electric field, 𝐸= π‘˜π‘„ π‘Ÿ 2 , substitute in Eq.3… becomes, From: π‘Š=πΉπ‘†π‘π‘œπ‘ πœƒ π‘Š=πΉπ‘Ÿ 𝑉= π‘˜π‘„ π‘Ÿ 2 π‘Ÿ π‘ˆ=πΉπ‘Ÿ 𝐸 π‘ˆ=π‘žπΈπ‘Ÿ Def’n of Electric potential energy Eq.1 𝑉= π‘˜π‘„ π‘Ÿ Electric potential for a single source charge 𝑉= π‘ˆ π‘ž βˆ™ 𝑏 Eq.2 π‘Ÿ Eq.2 is the definition of electric potential. Where: π‘ˆ is electric potential energy, π‘ž is unit charge, & 𝑉 is electric potential. 𝑉=π‘˜ 𝑄 1 π‘Ÿ 𝑄 2 π‘Ÿ 2 +… 𝑄 𝑛 π‘Ÿ 𝑛 Electric potential for multiple source charge 𝐹 Substitute Eq.1 in Eq.2 βˆ™ π‘Ž 𝑉= π‘žπΈπ‘Ÿ π‘ž +π‘ž - 𝑄 𝑉=πΈπ‘Ÿ Eq.3

3 βˆ™ βˆ™ electric potential - Units:
If the charge π‘ž equals the magnitude 𝑒 of the electron charge, 1.602π‘₯ 10 βˆ’19 𝐢, and the potential difference is 𝑉 π‘Žπ‘ =1 𝑉, the change in energy is called Electron Volt. MKS: 1 π½π‘œπ‘’π‘™π‘’ π‘π‘œπ‘’π‘™ =1 𝐽 𝐢 =1 π‘£π‘œπ‘™π‘‘=1 𝑉 CGS: 1 π‘’π‘Ÿπ‘” π‘ π‘‘π‘Žπ‘‘πΆ =1 π‘ π‘‘π‘Žπ‘‘π‘‰ 𝐸 1 𝑉=300 π‘ π‘‘π‘Žπ‘‘π‘‰ 1 eV=1.60π‘₯ 10 βˆ’19 𝐽 𝐹 +e=1.602π‘₯ 10 βˆ’19 𝐢 βˆ™ 𝑏 +π‘ž π‘Ÿ βˆ™ π‘Ž - 𝑄

4 electric potential Problem 1: An electric dipole consists of point charges π‘ž 1 =+12𝑛𝐢 and π‘ž 2 =βˆ’12𝑛𝐢 placed 10.0 cm apart. Compute the electric potentials at points π‘Ž, 𝑏, and 𝑐. From the def’n of electric potential 𝑉 𝑏 =9π‘₯ 𝑁. π‘š 2 𝐢 π‘₯ 10 βˆ’9 𝐢 4 π‘₯10 βˆ’2 π‘š + βˆ’12 π‘₯10 βˆ’9 𝐢 14 π‘₯10 βˆ’2 π‘š 𝑉=π‘˜ 𝑄 1 π‘Ÿ 𝑄 2 π‘Ÿ 2 +… 𝑄 𝑛 π‘Ÿ 𝑛 𝑉 𝑏 =1, 𝑉 𝑉 π‘Ž =π‘˜ π‘ž 1 π‘Ÿ π‘ž 2 π‘Ÿ 2 𝑉 𝑐 =9π‘₯ 𝑁. π‘š 2 𝐢 π‘₯ 10 βˆ’9 𝐢 13 π‘₯10 βˆ’2 π‘š + βˆ’12 π‘₯10 βˆ’9 𝐢 13 π‘₯10 βˆ’2 π‘š 𝑉 π‘Ž =9π‘₯ 𝑁. π‘š 2 𝐢 𝑛𝐢 6π‘π‘š + βˆ’12𝑛𝐢 4π‘π‘š 𝑉 𝑐 =0 𝑉 𝑉 π‘Ž =9π‘₯ 𝑁. π‘š 2 𝐢 π‘₯ 10 βˆ’9 𝐢 6 π‘₯10 βˆ’2 π‘š + βˆ’12 π‘₯10 βˆ’9 𝐢 4 π‘₯10 βˆ’2 π‘š =9π‘₯ 𝑁. π‘š 2 𝐢 2 βˆ’1π‘₯ 10 βˆ’7 𝐢 π‘š 𝑉 π‘Ž =βˆ’900 𝑁.π‘š 𝐢 =βˆ’900 𝐽 𝐢 =βˆ’900 π‘£π‘œπ‘™π‘‘π‘ =βˆ’900 𝑉

5 potential Difference βˆ™ βˆ™ What is potential difference?
The potential difference between two points is defined as: Potential difference between two points in a circuit is the work done in moving unit charge from one point to the other. The units for potential difference are Joules per coulomb, or volts. (1 π‘£π‘œπ‘™π‘‘ = 1 π½π‘œπ‘’π‘™π‘’/π‘π‘œπ‘’π‘™π‘œπ‘šπ‘). Potential difference is often time called Voltage or Electromotive force π‘Š=βˆ’βˆ†π‘ˆ work done by electric potential π‘Š π‘Žπ‘ =βˆ’ π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž π‘Š π‘Žπ‘ =βˆ’ π‘ˆ 𝑏 + π‘ˆ π‘Ž High potential Low potential βˆ™ a π‘Š π‘Žπ‘ = π‘ˆ π‘Ž βˆ’ π‘ˆ 𝑏 π‘ž π‘Š π‘Žπ‘ = π‘žπ‘‰ π‘Ž βˆ’ π‘žπ‘‰ 𝑏 How much work done by the moving charge? π‘Š π‘Žπ‘ = π‘ž 𝑉 π‘Ž βˆ’ 𝑉 𝑏 βˆ™ b π‘Š π‘Žπ‘ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 πΉπ‘Ÿ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 π‘žπΈπ‘Ÿ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 πΈπ‘Ÿ= 𝑉 π‘Ž βˆ’ 𝑉 𝑏 Note: 𝑉 π‘Ž βˆ’ 𝑉 𝑏 is potential difference or voltage

6 potential Difference βˆ™ βˆ™ What is potential difference?
The potential difference between two points is defined as: Potential difference between two points in a circuit is the work done in moving unit charge from one point to the other. The units for potential difference are Joules per coulomb, or volts. (1 π‘£π‘œπ‘™π‘‘ = 1 π½π‘œπ‘’π‘™π‘’/π‘π‘œπ‘’π‘™π‘œπ‘šπ‘). Potential difference is often time called Voltage or Electromotive force π‘Š=βˆ’βˆ†π‘ˆ work done by electric potential π‘Š π‘Žπ‘ =βˆ’ π‘ˆ 𝑏 βˆ’ π‘ˆ π‘Ž π‘Š π‘Žπ‘ =βˆ’ π‘ˆ 𝑏 + π‘ˆ π‘Ž High potential Low potential βˆ™ a π‘Š π‘Žπ‘ = π‘ˆ π‘Ž βˆ’ π‘ˆ 𝑏 π‘ž π‘Š π‘Žπ‘ = π‘žπ‘‰ π‘Ž βˆ’ π‘žπ‘‰ 𝑏 How much work done by the moving charge? π‘Š π‘Žπ‘ = π‘ž 𝑉 π‘Ž βˆ’ 𝑉 𝑏 βˆ™ b π‘Š π‘Žπ‘ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 πΉπ‘Ÿ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 π‘žπΈπ‘Ÿ π‘ž = 𝑉 π‘Ž βˆ’ 𝑉 𝑏 πΈπ‘Ÿ= 𝑉 π‘Ž βˆ’ 𝑉 𝑏 Note: 𝑉 π‘Ž βˆ’ 𝑉 𝑏 is potential difference or voltage

7 potential Difference Problem: In figure, a dust particle with mass π‘š=5.0π‘₯ 10 βˆ’9 π‘˜π‘”=5.0 πœ‡π‘” and charge π‘ž=2.0 𝑛𝐢 starts from rest and moves in a straight line from point π‘Ž to point 𝑏. What is its speed 𝑣 at point 𝑏. The force acts on dust particle is a conservative force. So, from conservation of energy… 𝐸 π‘Ž = 𝐸 𝑏 𝑉 π‘Ž =9π‘₯ 𝑁. π‘š 2 π‘˜π‘” π‘₯ 10 βˆ’9 𝐢 0.01π‘š + βˆ’3π‘₯ 10 βˆ’9 𝐢 0.02π‘š =1350 𝑉 𝐾 π‘Ž + π‘ˆ π‘Ž = 𝐾 𝑏 + π‘ˆ 𝑏 0+ π‘žπ‘‰ π‘Ž = 1 2 π‘š 𝑣 2 + π‘žπ‘‰ 𝑏 𝑉 𝑏 =9π‘₯ 𝑁. π‘š 2 π‘˜π‘” π‘₯ 10 βˆ’9 𝐢 0.02π‘š + βˆ’3π‘₯ 10 βˆ’9 𝐢 0.01π‘š =βˆ’1350 𝑉 1 2 π‘š 𝑣 2 = π‘žπ‘‰ π‘Ž βˆ’ π‘žπ‘‰ 𝑏 𝑉 π‘Ž βˆ’ 𝑉 𝑏 =1350βˆ’ βˆ’1350 =2700 𝑉 𝑣= 2π‘ž 𝑉 π‘Ž βˆ’ 𝑉 𝑏 π‘š 𝑣= 2 2π‘₯ 10 βˆ’9 𝐢 𝑉 5π‘₯ 10 βˆ’9 π‘˜π‘” =46 π‘š 𝑠

8 General problems 1. A charge of 20π‘₯ 10 βˆ’8 𝐢 is 20 π‘π‘š from another charge of 180π‘₯ 10 βˆ’8 𝐢 a) Find the force between the two b) What is the potential at the point which is exactly midway between the two c) What is the electric field intensity at the same point.

9 General problems 2.

10 General problems 4.

11 General problems

12 General problems

13 General problems

14 General problems

15 General problems

16 eNd


Download ppt "Physics 133 Electromagnetism"

Similar presentations


Ads by Google