Presentation is loading. Please wait.

Presentation is loading. Please wait.

DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE

Similar presentations


Presentation on theme: "DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE"— Presentation transcript:

1 DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE
Michal Koziel on behalf of CBM-MVD collaboration (+49) 069 /

2 The MVD – required performances
CBM-MVD will: improve secondary vertex resolution host highly granular silicon pixel sensors featuring fast read-out, excellent spatial resolution and robustness to radiation environment. See P.Senger introduction Required performances (SIS-100) Radiation tolerance > 1013neq/cm2 & >3 MRad Read-out speed > 30 kframes/s Intrinsic resolution < 5 µm Operation in vacuum „Light” support and cooling Material budget ~ 0.3 % X0

3 Research fields towards the MVD
Sensor development Radiation tolerance Support & cooling System integration M.Winter Front-End Electronics Main challenges: Provide fast and radiation tolerant sensor featuring low material budget Develop sensor readout system capable to handle high data rates J.Stroth Provide cooling and support with low material budget

4 Progress towards the MVD ...will meet all requirements
Prototype Demonstrator 4 sensors ½ of 1st station Final ...will meet all requirements 2008 2010 2012 Sensor: MIMOSA-20 ~200 frames/s few 1011 neq/cm2 & ~300 kRad 750µm thick Sensor: MIMOSA-26 AHR ~10 kframes/s ~1013 neq/cm2 & >300 kRad 50µm thick Sensor: MIMOSIS-1 (diff. geometry) Readout speed ~30 kframes/s 2015 Radiation tol. >1013 neq/cm2 & >3 MRad Readout Serial/analog Readout CP/digital/high data rates Cooling & support: TPG+RVC foam Cooling & support: CVD diamond Material budget: ~ 2.45 % X0 Material budget: ~ 0.3 % X0

5 Sensors for the MVD prototype Achieved performances
MIMOSA-26 AHR 0.35µm process High Resistivity (HR) EPI (400Ω·cm) Main features: CP architecture in pixel amplification comparator for each column 0 suppression logic pitch: 18.4 μm∼ 0.7 million pixels 21.2 x 10.6 mm2 18.4 µm pixel pitch CMOS processes with smaller feature size (0.18µm) Achieved performances MIMOSA-26 AHR (2009) [1] Design goals (SIS-100) MIMOSIS-1 (~2015) Radiation tolerance ~1013neq/cm2 & >300 kRad ~1013neq/cm2 & >3 MRad Read-out speed ~10 kframes/s >30 kframes/s Intrinsic resolution ~3.5 µm < 5 µm Material budget ~ 0.05 % X0 (50µm Si) [1] CMOS processes with smaller feature size (0.18µm) Sensor geometry – column length Extensively studied at IKF: [1] M.Deveaux „Radiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layer”, accepted for publication in Journal Of Instrumentation 2011

6 Readout concept for MVD prototype
Driver board Clk Start Reset JTAG FEB CB RCB PEXOR PC PCI optical receiver multiwire LVDS 5 x 800MBit/s multiwire LVDS 5 x 1GBit/s Optical Fibers 1 optical link 5 x 300MBit/s Optical Fibers CBM DAQ Powering Latchup detection Current & temperature monitoring LVDS to Optical conversion Powering LVDS drivers Current & temperature monitoring vacuum Data reduction Time stamping Slow control Fast control Data concentrator Data reduction Time stamping Slow control Fast control LVDS to Optical conversion Signal distribution Filtering FEB – Front End Board // CB – Converter Board // RCB – Readout Controller Board

7 Low voltage distribution
Main objectives: On-line current monitoring Latch-up detection & handling (based on STAR solution) Possibility to use radiation tolerant components (CERN) Slow control

8 Mechanical design * Material budget ~2.45% X0
Cooling Cooling & carrier * Heat Sink Heat Sink Carrier * +20C , Demonstrator Prototype Sensor Cu heat sink CVDD 300µm R/O Flex Cable Sensor Flex Cable Cu heat sink RVC TPG R/O Sensors thinned down to 50µm 750µm thick sensors Material budget ~2.45% X0 Material budget ~0.35% X0 TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

9 Mechanical design Sensor Cu heat sink CVDD 300µm R/O Flex Cable

10 Improving connectivity and handling
 SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope) IMEC (Belgium) + IKF Frankfurt + IPHC Strasbourg (sensors) Radiation tolerance ? Reliability ? Thermal cycles ? Real material budget ?

11 Thermal imaging system
IKF Technology Lab Digital Microscope Keyence VHX-600 Probe Station PA200 (Suss-Microtec) Thermal imaging system (VarioCAM HiRes 640) 10-7 mBar vacuum chamber

12 Conclusions & Summary The concept of the MVD read-out is defined
The hardware components for MVD prototye have been delivered to the IKF Assembly and debugging in progress Software development is ongoing Lab tests to be performed In parallel – software developments Challanges: Deliver MIMOSIS-1 – with required radiation tolerance & readout speed for MVD Most optimum read-out Connectivity Second station – large area sensors…

13 Thank you for your attention...
CBM-MVD Collaboration members: Samir Amar-Youcef, Norbert Bialas, Michael Deveaux, Dennis Doering, Melissa Domachowski, Christina Dritsa, Horst Düring, Ingo Fröhling, Tetyana Galatyuk, Michal Koziel, Jan Michel, Boris Milanovic, Christian Müntz, Bertram Neumann, Paul Scharrer, Christoph Schrader, Selim Seddiki, Joachim Stroth, Tobias Tischler, Christian Trageser, Bernhard Wiedemann Jérome Baudot, Grégory Bertolone, Nathalie Chon-Sen, Gilles Claus, Claude Colledani, Andrei Dorokhov, Wojchiech Dulinski, Marie Gelin-Galivel, Mathieu Goffe, Abdelkader Himmi, Christine Hu-Guo, Kimmo Jaaskelainen, Frédéric Morel, Fouad Rami, Mathieu Specht, Isabelle Valin, Marc Winter


Download ppt "DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE"

Similar presentations


Ads by Google