Presentation is loading. Please wait.

Presentation is loading. Please wait.

Optics and Layout of PERLE@Orsay Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017.

Similar presentations


Presentation on theme: "Optics and Layout of PERLE@Orsay Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017."— Presentation transcript:

1 Optics and Layout of PERLE@Orsay
Alex Bogacz Workshop, Orsay, Feb. 23, 2017

2 Overview PERLE Layout Multi-pass linac Optics in ER mode
CDR (900 MeV → 450 MeV) New Layout (450 MeV) – ‘lean’, fewer magnet varieties, 1.4 Tesla dipoles Multi-pass linac Optics in ER mode Choice of linac Optics: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Architecture Isochronous Arcs with Flexible Momentum Compaction (FMC) Optics Switchyard Vertical Spreaders/Recombiners with matching sections: Linacs-Arcs ‘First cut’ lattice design for Magnet inventory Alex Bogacz Workshop, Orsay, Feb. 23, 2017

3 PERLE (CDR) - Layout 900 MeV → 450 MeV 1 : 3 : 5 2 : 4 : 6 DE = 75 MeV
injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Alex Bogacz Workshop, Orsay, Feb. 23, 2017

4 Three passes ‘up’ + Three passes ‘down’
PERLE (CDR) - Layout 900 MeV → 450 MeV 1 : 3 : 5 37 m 0.95 m 14 m DE = 75 MeV injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz Workshop, Orsay, Feb. 23, 2017

5 PERLE (downsized) - Layout
37 m 14 m CDR Alessandra Valloni Alex Bogacz 24 m 6 m ‘New’ Alex Bogacz Workshop, Orsay, Feb. 23, 2017

6 Three passes ‘up’ + Three passes ‘down’
- Layout 450 MeV Arc 1 Arc 2 Arc 3 Arc 5 Arc 4 Arc 6 Magnet varieties 1 : 3 : 5 DE = 75 MeV 6 m 0.6 m 5 MeV 24 m DE = 75 MeV 5 MeV 2 : 4 : 6 DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz Workshop, Orsay, Feb. 23, 2017

7 PERLE@Orsay - Layout Top view Side view 2 : 4 : 6 1 : 3 : 5 6 m 24 m

8 Cryo-module - Layout and Cavity Specs
SNS 805 MHz Cryo-module 8.491 m MHz RF, 5-cell cavity: l = cm Lc = 5l/2 = cm Grad = 20 MeV/m (18.7 MeV per cavity) DE= 74.8 MeV per Cryo-module 93.5 cm Alex Bogacz Workshop, Orsay, Feb. 23, 2017

9 Linac - Layout Re-injection chicane Cryo-module (8.491 m)
10 BETA_X&Y[m] BETA_X BETA_Y Cryo-module (8.491 m) Re-injection chicane Alex Bogacz Workshop, Orsay, Feb. 23, 2017

10 Multi-pass Linac ER Optics
Einj E1 E2 Linac 1 E2 Arc 2,4,6 Arc 1,3,5 Linac 2 ×3 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration/Deceleration Linac 1 Alex Bogacz Workshop, Orsay, Feb. 23, 2017

11 Multi-pass Linac ER Optics
Arc 2,4,6 Arc 1,3,5 E2 Linac 2 E1 Einj E1 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Acceleration/Deceleration Linac 2 ×3 Alex Bogacz Workshop, Orsay, Feb. 23, 2017

12 Multi-pass ER Optics Acceleration Deceleration E6 E5 E4 E3 E2 E1 Einj
12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Deceleration Alex Bogacz Workshop, Orsay, Feb. 23, 2017

13 Arc 6 Optics – FMC Lattice
8.5103 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 453 MeV 12×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[kG/cm] = -1.70 Q2 L[cm] =20 G[kG/cm] = 1.73 Q3 L[cm] =10 G[kG/cm] = -1.48 Q4 L[cm] =10 G[kG/cm] = 1.52 Dipoles: (30 cm long) B = 14 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

14 Arc 6 Optics – FMC Lattice
8.5103 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 453 MeV 12×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Synchronous acceleration in the linacs ⇨ Isochronous arc optics: Alex Bogacz Workshop, Orsay, Feb. 23, 2017

15 Arc 5 Optics – FMC Lattice
8.5397 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 379 MeV 8×180 bends 4×90 bends Qx,y = 1.25 triplet: Q3 Q2 Q1 triplet: Q1 Q2 Q3 singlet: Q4 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

16 Arc 3 Optics – FMC Lattice
8.4253 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 230 MeV 4×300 bends 4×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[kG/cm] = -0.42 Q2 L[cm] =10 G[kG/cm] = 0.7 Q3 L[cm] =10 G[kG/cm] = -0.41 Q4 L[cm] =10 G[kG/cm] = 0.56 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

17 LHeC 60 GeV ERL: Arc Optics (10 GeV)
230 600 0.6 -0.6 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 3060 600 0.6 -0.6 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y doglegs vert. 2-step spreader doglegs dis. sup. cell 58 FMC cells dis. sup. cell vert. 2-step recombiner 180 deg. Arc Arc dipoles: $Lb=400 cm $B=0.47 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

18 Switchyard - Vertical Separation of Arcs (1, 3, 5)
Arc 1 (80 MeV) Arc 3 (230 MeV) Arc 5 (379 MeV) 30 cm Energies1 : 3 : 5 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

19 Switchyard - Vertical Separation of Arcs (2, 4, 6)
Arc 2 (155 MeV) Arc 4 (304 MeV) Arc 6 (453 MeV) 30 cm Energies1 : 2 : 3 Dipoles: (30 and 60 cm long) B = 14 kGauss Alex Bogacz Workshop, Orsay, Feb. 23, 2017

20 Vertical Spreaders - Optics
Spr. 3 (230 MeV) Spr. 5 (379 MeV) 3.9183 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y vertical step I vertical step II vertical chicane Alex Bogacz Workshop, Orsay, Feb. 23, 2017

21 Arc 1 Optics (80 MeV) Isochronous Arc pathlength: 44 × lRF
16.46 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 44 × lRF 2-step vert. Spreader 1800 Arc 2-step vert. Recombiner Spr. dipoles: 4 450 bends L = 15 cm B = 14 kGauss Arc dipoles : 4450 bends L = 15 cm B = 14 kGauss Rec. dipoles: 4 450 bends L = 15 cm B = 14 kGauss quads: L = 10 cm G  1 kGauss/cm Alex Bogacz Workshop, Orsay, Feb. 23, 2017

22 Magnet Inventory

23 Longitudinal Acceptance
Longitudinal phase space, PLACET2 simulation (900 MeV) Dario Pellegrini Alex Bogacz Workshop, Orsay, Feb. 23, 2017

24 Transverse Acceptance
Transverse phase space, PLACET2 simulation (900 MeV) Dario Pellegrini Synchrotron rad. effects Well preserved phase space and transverse emittance at 900 MeV and down to the dump. Small impact of (coherent) synchrotron radiation verified with Elegant. Small impact of short-range wakefields expected (to be further investigated). Alex Bogacz Workshop, Orsay, Feb. 23, 2017

25 PERLE@Orsay - Layout 6 m 24 m
Alex Bogacz Workshop, Orsay, Feb. 23, 2017

26 Summary PERLE@Orsay (450 MeV) Multi-pass linac Optics in ER mode
‘lean design’, fewer magnet varieties, 1.4 Tesla dipoles Multi-pass linac Optics in ER mode Linear lattice: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Choice Synchronous acceleration → Isochronous arcs Flexible Momentum Compaction Optics Complete Arc Architecture Vertical switchyard Matching sections: Linac-Switchyard-Arc ‘First cut’ Lattice design for ERL-TF Two Linacs + Six Arcs Magnet inventory Alex Bogacz Workshop, Orsay, Feb. 23, 2017

27 Special Thanks to: Alessandra Valloni Max Klein Erk Jensen
Alex Bogacz Workshop, Orsay, Feb. 23, 2017


Download ppt "Optics and Layout of PERLE@Orsay Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017."

Similar presentations


Ads by Google