Presentation is loading. Please wait.

Presentation is loading. Please wait.

Asymptotics & Stirling’s Approximation

Similar presentations


Presentation on theme: "Asymptotics & Stirling’s Approximation"— Presentation transcript:

1 Asymptotics & Stirling’s Approximation
Mathematics for Computer Science MIT 6.042J/18.062J Asymptotics & Stirling’s Approximation Copyright © Albert Meyer, 2002. Prof. Albert Meyer & Dr. Radhika Nagpal

2 Factorial defines a product:
Integral Method Factorial defines a product: Turn product into a sum taking logs: ln(n!) = ln(1 · 2 · 3 · · · (n – 1) · n) = ln 1 + ln 2 +· · · + ln(n – 1) + ln(n) =

3 … bound by integral method Integral Method ln (x) … ln (x+1) ln ln n
2 3 1 4 5 n–2 n–1 n ln (x+1) ln (x) ln 2 ln 3 ln 4 ln 5 ln n-1 ln n

4 Integral Method Reminder:

5 Integral Method Bounds on ln(n!)

6 In-Class Problem Problem 1

7 Stirling’s Formula So

8 Stirling’s Formula A precise approximation: Stirling’s Formula

9 Asymptotic Equivalence
f(n) ~ g(n)

10 Little Oh Asymptotically smaller: f(n) = o(g(n))

11 Big Oh Asymptotic Order of Growth: f(n) = O(g(n))

12 The Oh’s If f = o(g) or f ~ g then f = O(g) lim = 0 lim = 1 lim < 

13 The Oh’s If f = o(g), then g  O(f) lim =  lim = 0

14 c,n0  0 n  n0 |f(n)|  c·g(n)
Big Oh Equivalently, f(n) = O(g(n)) c,n0  0 n  n0 |f(n)|  c·g(n)

15 f(x) = O(g(x)) g(x) c· f(x) Asymptotic Notation ln c
blue stays below red log scale f(x)

16 Lemma: xa = o(xb) for a < b
Little Oh Lemma: xa = o(xb) for a < b Proof: and b - a > 0. So as x  , xb-a   and

17 Lemma: ln x = o(x) for  > 0.
Little Oh Lemma: ln x = o(x) for  > 0. Proof: for z 1.

18 Lemma: ln x = o(x) for  > 0.
Little Oh Lemma: ln x = o(x) for  > 0. Proof: Let for  > .

19 f(n) = O(g(n)) and g(n) = O(f(n))
Theta Same Order of Growth: f(n) = (g(n)) f(n) = O(g(n)) and g(n) = O(f(n))

20 In-Class Problem Problems 2--4

21 Big Oh Mistakes False Lemma: Of course really

22 = n· O(1) = O(n). 0 = O(1), 1 = O(1), 2 = O(1),… So each i = O(1). So
Big Oh Mistakes False Lemma: False Proof: 0 = O(1), 1 = O(1), 2 = O(1),… So each i = O(1). So = n· O(1) = O(n).

23 In-Class Problem Problem 5


Download ppt "Asymptotics & Stirling’s Approximation"

Similar presentations


Ads by Google