Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advanced LP models column generation.

Similar presentations


Presentation on theme: "Advanced LP models column generation."— Presentation transcript:

1 Advanced LP models column generation

2 min max

3 min max OK OK ?

4 Bin packing example bins of size K items of different types items of type i have size s(i) and there are n(i) of them problem put all items into the bins minimizing the number of bins

5

6

7

8 + = 3 1 2 2 4 4 2 + = 4 feasible patterns + = 8

9 x 2 1 3 4 5 6 7 + = 3 8 4 + 1 1 2 4 3 x 2 1 3 4 5 6 7

10 min S x i 1 2 1 3 x = 2 2 4 3 4 4 4 4 2 8 x integer

11 min max OK OK ?

12 1 2 4 3 < 1 .. 1 2 1 y 2 3 1 2 2 4 3 4 4 4 2

13 y < + 1 2 2 y < + a y < + a s < K + max a y + < 1
3 1 < + 1 2 2 y 3 1 < + a 2 3 1 y < + for all feasible patterns a 2 3 1 s < K + max a 2 3 1 y + < 1

14 otherwise add pattern maximizing knapsack
2 3 1 y + a 2 3 1 s < K + a 1 a 2 a 3 integer knapsack ! if max optimality ! < otherwise add pattern maximizing knapsack

15 example bin capacity = 20 3 types: type 1: size = 7; quantity = 50 type 2: size = 5; quantity =100 type 3: size = 3; quantity = 70 25 24 4 53 bins x starting patterns y= ( / /2 ) generated patterns y= ( 1/3 1/ /6 ) y= ( )

16 however, change quantities to 52 97 71
solution is : x = 26 1 x = x = 0 x = 2 3 4 53.1 how to get an integer solution?

17 V(j)=optimal value for a knapsack of capacity j
max a 2 3 1 y + < 1 a 2 3 1 s < K + a 1 a 2 a 3 integer V(j)=optimal value for a knapsack of capacity j V(j) = max { V(j - s(i)) + y(i) : i= 1, ... , n} V(j) > V(j - s(i)) + y(i) i= 1, ... , n; j=1,...,K V(K) < 1 V(j) >

18 min max

19 max S b(i) y(i) V(j) > V(j - s(i)) + y(i) i= 1, ... , n; j=1,...,K V(K) < 1 V(j) > however this is the dual problem we need the patterns which are in the primal so let’s make the dual of the above problem

20 It turns out that the dual is a flow problem
nodes capacity values (0,1,2,...,K) arcs each possible filling from capacity j to capacity j+s(i) dual variables flows on arcs

21 4 29 24 25 1 2 3 4 5 6 7 8 9 10 11 12 25+4 13 14 15 16 17 18 19 20

22 4 25 times the pattern 25 1 2 3 4 24 4 5 4 6 25 7 8 24 9 10 11 12 25+4 13 29 4 14 15 24 25+4 16 17 18 24 19 20

23 4 24 times the pattern 1 25 2 24 3 4 4 5 4 6 7 25 8 24 9 10 11 12 25+4 13 29 4 14 15 24 16 25+4 17 18 24 19 20

24 4 4 times the pattern 1 25 2 4 3 24 4 5 4 6 7 25 8 24 9 10 11 12 25+4 4 13 29 14 15 24 25+4 16 17 18 24 19 20


Download ppt "Advanced LP models column generation."

Similar presentations


Ads by Google