Presentation is loading. Please wait.

Presentation is loading. Please wait.

Angular Momentum Coupling

Similar presentations


Presentation on theme: "Angular Momentum Coupling"— Presentation transcript:

1 Angular Momentum Coupling
FermiGasy Angular Momentum Coupling

2 Addition of Angular Momenta
q q1 q2 f2 Angular Momentum Coupling W. Udo Schröder, 2005

3 Angular Momentum Coupling
W. Udo Schröder, 2005

4 Constructing J Eigen States
Can you show this?? Angular Momentum Coupling W. Udo Schröder, 2005

5 Constructing J-1 Eigen States
We have this state: Angular Momentum Coupling Condon-Shortley Normalization conditions leave open phase factors  choose asymmetrically <a|J1z|b> ≥ 0 and <a|J2z|b> ≤ 0 W. Udo Schröder, 2005

6 Clebsch-Gordan Coefficients
Angular Momentum Coupling W. Udo Schröder, 2005

7 Angular Momentum Coupling
Recursion Relations Angular Momentum Coupling W. Udo Schröder, 2005

8 Recursion Relations for CG Coefficients
Projecting on <j1,j2,m1,m2| yields Angular Momentum Coupling W. Udo Schröder, 2005

9 Symmetries of CG Coefficients
Triangular relation Condon-Shortley : Matrix elements of J1z and J2z have different signs Angular Momentum Coupling W. Udo Schröder, 2005

10 Angular Momentum Coupling
Explicit Expressions A. R. Edmonds, Angular Momentum in Quantum Mechanics Angular Momentum Coupling W. Udo Schröder, 2005

11 2 Particles in j Shell (jj-Coupling)
Look for 2-part. wfs of lowest energy in same j-shell, Vpair(r1,r2) < 0  spatially symmetric  jj1(r) = jj2(r). Construct consistent spin wf. N = normalization factor Which J = j1+j2 (and M) are allowed?  antisymmetric WF yJM Angular Momentum Coupling W. Udo Schröder, 2005

12 Symmetry of 2-Particle WFs in jj Coupling
Antisymmetric function of 2 equivalent nucleons (2 neutrons or 2 protons) in j shell in jj coupling. j1 = j2 = j half-integer spins  J =even wave functions with even 2-p. spin J are antisymmetric wave functions with odd 2-p. spin J are symmetric jj coupling  LS coupling  equivalent statements 2) l1=l2=l integer orbital angular momenta  L wave functions with even 2-p. L are spatially symmetric wave functions with odd 2-p. L are spatially antisymmetric Angular Momentum Coupling W. Udo Schröder, 2005

13 Tensor and Scalar Products
Angular Momentum Coupling Transforms like a J=0 object = number W. Udo Schröder, 2005

14 Example: HF Interaction
Angular Momentum Coupling protons electrons only only W. Udo Schröder, 2005

15 Angular Momentum Coupling
Wigner’s 3j Symbols Angular Momentum Coupling W. Udo Schröder, 2005

16 Angular Momentum Coupling
Explicit Formulas Explicit (Racah 1942): Angular Momentum Coupling All factorials must be ≥ 0 W. Udo Schröder, 2005

17 Spherical Tensors and Reduced Matrix Elements
a, b, g = Qu. # characterizing states Angular Momentum Coupling Wigner-Eckart Theorem W. Udo Schröder, 2005

18 Wigner-Eckart Theorem
Angular Momentum Coupling Take the simplest ME to calculate W. Udo Schröder, 2005

19 Examples for Reduced ME
Angular Momentum Coupling W. Udo Schröder, 2005

20 Reduced MEs of Spherical Harmonics
Angular Momentum Coupling Important for the calculation of gamma and particle transition probabilities W. Udo Schröder, 2005

21 Angular Momentum Coupling
Isospin Charge independence of nuclear forces  neutron and proton states of similar WF symmetry have same energy  n, p = nucleons Choose a specific representation in abstract isospin space: Angular Momentum Coupling Transforms in isospin space like angular momentum in coordinate space  use angular momentum formalism for isospin coupling. W. Udo Schröder, 2005

22 2-Particle Isospin Coupling
Use spin/angular momentum formalism: t  (2t+1) iso-projections Angular Momentum Coupling W. Udo Schröder, 2005

23 2-Particle Spin-Isospin Coupling
Both nucleons in j shell  lowest E states have even J  T=1 ! For odd J  total isospin T = 0 3 states (MT=-1,0,+1) are degenerate, if what should be true (nn, np forces are same) Angular Momentum Coupling Different MT states belong to different nuclei T3 = (N-Z)/2 W. Udo Schröder, 2005

24 2-Particle Isobaric Analog (Isospin Multiplet) States
Corresponding T=1levels in A=14 nuclei Angular Momentum Coupling T3=+1 2n T3=-1 2n holes T3=0, pn W. Udo Schröder, 2005

25 Angular Momentum Coupling
Further Applications Tensors and Angular Momentum Coupling Angular Momentum Coupling W. Udo Schröder, 2005

26 Separation of Variables: HF Interaction
Angular Momentum Coupling protons electrons only only W. Udo Schröder, 2005

27 Electric Quadrupole Moment of Charge Distributions
arbitrary nuclear charge distribution with norm |e|Z e q z Coulomb interaction Point Charge Quadrupole moment Q  T2= Q2 -ME in aligned state m=j Nuclear Deform Look up/calculate W. Udo Schröder, 2004

28 Angular-Momentum Decomposition: Plane Waves
Plane wave can be decomposed into spherical elementary waves q z Spherical Bessel function Angular Momentum Coupling W. Udo Schröder, 2005

29 j-Transfer Through Particle Emission/Absorption
C N p+T  Angular Momentum Coupling W. Udo Schröder, 2005

30 Average Transition Probabilities
f i If more than 1 initial state may be populated (e.g. diff. m)  average over initial states Angular Momentum Coupling Sum over all components of Tk  = total if Tk transition probability W. Udo Schröder, 2005

31 Angular Momentum Coupling
W. Udo Schröder, 2005

32 Angular Momentum Coupling
W. Udo Schröder, 2005

33 Angular Momentum Coupling
Translations r V(r) x V(x) Angular Momentum Coupling W. Udo Schröder, 2005


Download ppt "Angular Momentum Coupling"

Similar presentations


Ads by Google