Download presentation
Presentation is loading. Please wait.
1
Rotational Motion
2
Axis of rotation Angular displacement π= π₯ π ΞΈ is measured in radians 1 rev = 360Β° = 2Ο rad Radians is a βghostβ unit
3
Angular velocity π= π£ π π is measured in rad/s π= ππ ππ‘
4
Angular acceleration πΌ= π π πΌ is measured in rad/s2 πΌ= ππ ππ‘
5
Rotation with constant angular acceleration
π£= π£ 0 +ππ‘ π= π 0 +πΌπ‘ π₯= π£ 0 π‘+ 1 2 π π‘ 2 π= π 0 π‘+ 1 2 πΌ π‘ 2 π£ 2 = π£ ππ₯ π 2 = π πΌπ π₯= π£ 0 +π£ π‘ π= π 0 +π π‘
6
Period of rotation Determine the period of a car travelling at 35 m/s around a track with a radius of 75 m. X s 1 rev = 1 s 35 m Γ 2Ο 75 m 1 rev π= 2π π= 2ππ π£ π=13.5 s
7
Determine the period of a rotating disc with an angular speed of 4
Determine the period of a rotating disc with an angular speed of 4.3 rad/s X s 1 rev = 1 s 4.3 rad Γ 2Ο rad 1 rev π= 2π π= 2π π π=1.46 s
8
Acceleration A rotating object π π‘ =πΌπ π π = π£ 2 π = π 2 π
Does have centripetal acceleration Might have linear (tangential) acceleration π π‘ =πΌπ π π = π£ 2 π = π 2 π
9
Kinetic energy If we treat a rotating object as a series of particles πΎ= 1 2 π 1 π£ π 2 π£ π 3 π£ 3 2 +β¦ πΎ= π π£ π 2 πΎ= π π π π 2 πΎ= π π π 2 π 2
10
πΌ= π π π 2 I is the moment of inertia or rotational inertia I is the rotational analog for mass πΎ= 1 2 πΌ π 2
11
πΌ= π π π 2 If a body is continuous πΌ= π 2 ππ
12
Objects for which you need to be able to determine rotational inertia
Thin hoop rotated about its center Thin rod rotated about an axis through its center and perpendicular to the rod Solid disk rotated about its center
13
Thin hoop rotated about its center
πΌ= π 2 ππ πΌ= π
2 ππ πΌ=π π
2
14
ALL moments of inertia will have the same form:
πΌ=π₯π π
2 Where x β€ 1
15
Thin rod rotated about an axis through its center and perpendicular to the rod
πΌ= π 2 ππ
16
Consider a thin slice of width dr
The mass of this slice, dm, is ππ=πππ Where ΞΌ is linear density π= π πΏ ππ= π πΏ ππ
17
πΌ= π 3πΏ πΏ 3 4 πΌ= π πΏ 2 12 or πΌ= 1 12 π πΏ 2 πΌ= π 2 π πΏ ππ πΌ= π πΏ π 2 ππ
πΌ= π 2 π πΏ ππ πΌ= π πΏ π 2 ππ πΌ= π πΏ β πΏ 2 πΏ 2 π 2 ππ πΌ= π πΏ π β πΏ 2 πΏ 2 πΌ= π 3πΏ πΏ β β πΏ 2 3 πΌ= π 3πΏ πΏ 3 8 β β πΏ 3 8 πΌ= π 3πΏ πΏ 3 4 πΌ= π πΏ 2 12 or πΌ= 1 12 π πΏ 2
18
Solid disk (or cylinder) rotated about its center
πΌ= π 2 ππ
19
Consider a thin ring a distance r from the center with a width of dr
The mass of this slice, dm, is ππ=πππ Where Ο is areal density π= π π΄ ππ= π π΄ ππ΄
20
ππ= π π΄ ππ΄ ππ= π π π
2 ππ΄ Area = ? βUncurlβ the slice ππ΄=2ππππ ππ= π π π
2 2ππππ πΌ= π 2 ππ πΌ= π 2 π π π
2 2ππππ dr 2Οr
21
πΌ= π 2 π π π
2 2ππππ πΌ= 2π π
π 3 ππ πΌ= 2π π
π
π 3 ππ πΌ= 2π π
π π
πΌ= 2π π
2 π
4 4 πΌ= 1 2 π π
2 dr 2Οr
22
A rectangular plate about an axis through its center
πΌ= π 2 ππ ππ= π π΄ ππ΄
23
Consider a small piece of the plate of size da Γ db
ππ= π π΄ ππ΄ ππ= π ππ ππ΄ ππ= π ππ ππππ πΌ= π 2 π ππ ππππ πΌ= π ππ π 2 ππππ πΌ= π ππ π π π π 2 ππππ
24
πΌ= π ππ π π π π 2 ππππ πΌ= π ππ β π 2 π 2 π π 2 β π 2 π 2 π π 2 ππππ πΌ= π ππ β π 2 π 2 π π π π 3 3 π β π 2 π 2 ππππ πΌ= π ππ β π 2 π 2 π π π πβ β π π ππππ πΌ= π ππ β π 2 π 2 π π π 3 π 12 ππππ
25
πΌ= π ππ β π 2 π 2 π π π 3 π 12 ππππ πΌ= π ππ π 3 π π π 3 3 π β π 2 π 2 πΌ= π ππ π 3 π π πβ β π π πΌ= π ππ π 3 π π 3 π 12 πΌ= 1 12 π π 2 + π 2
26
Annular cylinder about an axis through its center
πΌ= π 2 ππ ππ= π π΄ ππ΄ πΌ= π π΄ π 2 ππ΄ πΌ= π π π 2 2 βπ π π 2 ππ΄ πΌ= π π π 2 2 βπ π π 2 2ππ ππ πΌ= 2ππ π π 2 2 βπ π π 3 ππ
27
πΌ= 2ππ π π 2 2 βπ π π 3 ππ πΌ= 2π π 2 2 β π π 1 π 2 π 3 ππ πΌ= 2π π 2 2 β π π π 1 π 2 πΌ= π 2 π 2 2 β π π 2 4 β π 1 4 πΌ= π 2 π 2 2 β π π 2 2 β π π π 1 2 πΌ= 1 2 π π π 2 2
28
Thin rod rotated about an axis through its center and perpendicular to the rod
πΌ= 1 12 π πΏ 2 end ?
29
Consider a thin slice of width dr
The mass of this slice, dm, is ππ=πππ Where ΞΌ is linear density π= π πΏ ππ= π πΏ ππ
30
πΌ= π 2 π πΏ ππ πΌ= π πΏ π 2 ππ πΌ= π πΏ 0 πΏ π 2 ππ πΌ= π πΏ π πΏ πΌ= π 3πΏ πΏ 3 β 0 3 πΌ= π 3πΏ πΏ 3 πΌ= π πΏ 2 3 or πΌ= 1 3 π πΏ 2
31
The rotational inertia for a thin rod about and axis through its center and perpendicular to the rod was π πΏ 2 . Determine the rotational inertia about a parallel axis through the end of the rod. πΌ= πΌ πππ +π π (Parallel axis theorem) πΌ= 1 12 π πΏ 2 +π π 2 πΌ= 1 12 π πΏ 2 +π πΏ 2 2 πΌ= 1 12 π πΏ π πΏ 2 πΌ= 1 12 π πΏ π πΏ 2 πΌ= 4 12 π πΏ 2 = 1 3 π πΏ 2
32
Torque is the ability of a force to cause rotation in an object
π=ππΉ sin π r is the distance from the axis of rotation to the point of application of the force Ο is the smaller of the two angles made by r and F
34
Torques are additive Torques in the clockwise direction are negative, counterclockwise are positive
35
Newtonβs second law for rotation
Ξ£π=πΌπΌ Unit for torque π π
2 πππ π 2 =ππβ π π 2 ππβπ 1 π 2 =π πβπ (NOT joules!!!!!!!)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.