Download presentation
Presentation is loading. Please wait.
1
Linear Optical Quantum Computing
-Rishabh Sahu
2
Summary Qubits: (Dual-rail bits) |1> |0> |0> |1> |0>
Single bit unitary transformation are trivial. Two-bit gates are challenge as photons don’t interact.
3
Two-qubit CZ gate | 𝜙 1 > CZ| 𝜙 1 > 𝜋 4 − 𝜋 4 | 𝜙 2 >
Control Target CZ |0> |0,0> |1> |0,1> |1,0> -|1,1> CZ| 𝜙 1 > 𝜋 4 − 𝜋 4 | 𝜙 2 > Success probability is
4
Quantum Teleportation Fix
Proposed by Gottesman and Chuang, 1999 Introduction Bell Measurement |𝜓> |𝜙> |𝜓>
5
Quantum Teleportation Fix
Several identities:
6
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
7
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
8
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
9
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
10
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
11
Quantum Teleportation Fix
| 𝜓 1 > | 𝜙 1 > Offline System CZ|𝜓> | 𝜙 2 > | 𝜓 2 >
12
Quantum Teleportation using Linear Optics
Dual-Rail bit Entangled Resource 𝐸 1 : 𝑃 𝐸 1 +𝑃 𝐸 2 = 1 2 𝐸 2 :
13
Quantum Teleportation using Linear Optics
QFT |𝜓> Mode 1 |𝜓> Mode 2 Entangled Resource
14
Quantum Teleportation using Linear Optics
Measurement Output Mode Probability Total probability of success = 2/3 (for 3-dimensional system) For a n-dimensional system, success probability =1− 1 𝑛
15
Experimental Realization?
16
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.