Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reasoning in Algebra & Geometry

Similar presentations


Presentation on theme: "Reasoning in Algebra & Geometry"β€” Presentation transcript:

1 Reasoning in Algebra & Geometry
Skill 12

2 Objective HSG-CO.9/10/11: Students are responsible for using and connecting reasoning in algebra and geometry.

3 Definitions A proof is a convincing argument that uses deductive reasoning and logically shows why a conjecture is true.

4 Algebra Properties If 𝒂=𝒃, then 𝒂+𝒄=𝒃+𝒄 If 𝒂=𝒃, then π’‚βˆ’π’„=π’ƒβˆ’π’„
Addition Property of Equality If 𝒂=𝒃, then 𝒂+𝒄=𝒃+𝒄 Subtraction Property of Equality If 𝒂=𝒃, then π’‚βˆ’π’„=π’ƒβˆ’π’„ Multiplication Property of Equality If 𝒂=𝒃, then π’‚βˆ™π’„=π’ƒβˆ™π’„ Division Property of Equality If 𝒂=𝒃 and π’„β‰ πŸŽ, then 𝒂 𝒄 = 𝒃 𝒄

5 Algebra Properties 𝒂=𝒂 If 𝒂=𝒃, then 𝒃=𝒂 If 𝒂=𝒃 and 𝒃=𝒄, then 𝒂=𝒄.
Reflexive Property of Equality 𝒂=𝒂 Symmetric Property of Equality If 𝒂=𝒃, then 𝒃=𝒂 Transitive Property of Equality If 𝒂=𝒃 and 𝒃=𝒄, then 𝒂=𝒄. Substitution Property of Equality If 𝒂=𝒃, then 𝒃 can replace 𝒂 in any expression.

6 𝒂 𝒃+𝒄 =𝒂𝒃+𝒃𝒄 𝒂 π’ƒβˆ’π’„ =π’‚π’ƒβˆ’π’ƒπ’„ Algebra Properties
Distributive Property of Equality 𝒂 𝒃+𝒄 =𝒂𝒃+𝒃𝒄 𝒂 π’ƒβˆ’π’„ =π’‚π’ƒβˆ’π’ƒπ’„

7 Geometry Properties 𝑨𝑩 β‰… 𝑨𝑩 βˆ π‘¨β‰…βˆ π‘¨ If 𝑨𝑩 β‰… π‘ͺ𝑫 , then π‘ͺ𝑫 β‰… 𝑨𝑩 .
Reflexive Property of Equality 𝑨𝑩 β‰… 𝑨𝑩 βˆ π‘¨β‰…βˆ π‘¨ Symmetric Property of Equality If 𝑨𝑩 β‰… π‘ͺ𝑫 , then π‘ͺ𝑫 β‰… 𝑨𝑩 . If βˆ π‘¨β‰…βˆ π‘©, then βˆ π‘©β‰…βˆ π‘¨. Transitive Property of Equality If 𝑨𝑩 β‰… π‘ͺ𝑫 and π‘ͺ𝑫 β‰… 𝑬𝑭 , then 𝑨𝑩 β‰… 𝑬𝑭 . If βˆ π‘¨β‰…βˆ π‘© and βˆ π‘©β‰…βˆ π‘ͺ, then βˆ π‘¨β‰…βˆ π‘ͺ.

8 Example 1; Justifying when Solving Equations
(a) What is the value of x in the picture? Justify each step. 1) βˆ π΄π‘‚π‘€ and βˆ π‘€π‘‚πΆ are supplementary. 1) Linear Pair Postulate 2) π‘šβˆ π΄π‘‚π‘€+π‘šβˆ π‘€π‘‚πΆ=180 2) Def. of Supplementary 3) 2π‘₯+30+π‘₯=180 3) Substitution Property 4) 3π‘₯+30=180 4) Combine Terms 5) 3π‘₯=150 πŸπ’™+πŸ‘πŸŽ Β° 𝒙 Β° 𝑨 𝑢 π‘ͺ 𝑴 5) Subtraction Property 6) π‘₯=50 6) Division Property Q.E.D.

9 Example 1; Justifying when Solving Equations
(b) What is the value of x in the picture? Justify each step. 1) βˆ π‘…π΄π΅β‰…βˆ π΅π΄π‘ 1) Def. of ∠ Bisector 2) π‘šβˆ π‘…π΄π΅=π‘šβˆ π΅π΄π‘ 2) Def. of β‰… βˆ β€™s 3) π‘₯=2π‘₯βˆ’75 3) Substitution Property 4) π‘₯+75=2π‘₯ 4) Addition Property 5) π‘₯=75 5) Subtraction Property 𝑹 𝑨 𝑡 𝑩 𝒙° πŸπ’™βˆ’πŸ•πŸ“ Β° Q.E.D.

10 Example 2; Name the Property
What is the property that justifies going from the first step to the second step? (a) 2π‘₯+9=19 (b) βˆ π‘‚β‰…βˆ π‘Š and βˆ π‘‚β‰…βˆ πΏ 2π‘₯=10 βˆ π‘‚β‰…βˆ πΏ Subtraction Property Transitive Property (c) π‘šβˆ πΈ=π‘šβˆ π‘‡ π‘šβˆ π‘‡=π‘šβˆ πΈ Symmetric Property

11 Example 3; Writing a Proof
Write a two column proof. 1) π‘šβˆ 1=π‘šβˆ 3 1) Given 2) π‘šβˆ 2=π‘šβˆ 2 2) Reflexive Property 3) π‘šβˆ 1+π‘šβˆ 2=π‘šβˆ 3+π‘šβˆ 2 3) Addition Property 4) π‘šβˆ 1+π‘šβˆ 2=π‘šβˆ π΄πΈπΆ and π‘šβˆ 2+π‘šβˆ 3=π‘šβˆ π·πΈπ΅ 4) ∠ Addition Post. A B C D E 1 2 3 5) π‘šβˆ π΄πΈπΆ=π‘šβˆ π·πΈπ΅ 5) Substitution Property Q.E.D.

12 #12: Reasoning in Algebra and Geometry
Questions? Summarize Notes Homework Worksheet Quiz


Download ppt "Reasoning in Algebra & Geometry"

Similar presentations


Ads by Google