Presentation is loading. Please wait.

Presentation is loading. Please wait.

Differentials; Exact Equations

Similar presentations


Presentation on theme: "Differentials; Exact Equations"— Presentation transcript:

1 Differentials; Exact Equations
MATH 374 Lecture 6 Differentials; Exact Equations

2 2.4: Exact Equations Definition: The differential equation
M(x,y)dx + N(x,y)dy = 0 (1) is said to be exact on rectangle R if there exists a function F(x,y) such that  F/ x = M and  F/ y = N (2) on R (i.e. the total differential of F = LHS of (1) on R). 2

3 Note If (1) is exact, then solutions to (1) are given implicitly by F(x,y) = C where F is a function satisfying (2) and C is any constant. To see this, take the total differential of both sides of F(x,y) = C. F/x dx + F/y dy = 0 (C is a constant) M dx + N dy = (by (2)) 3

4 A Way to Check if (1) is Exact!
Theorem 2.3: If M, N, M/y, and N/x are continuous functions on rectangle R, then (1) is exact if and only if on R. 4

5 Proof of Theorem 2.3 (=>) Assume (1) is exact, to show (3) holds.
By definition of exact, there exists a function F(x,y) such that (2) holds on R, i.e.

6 Proof of Theorem 2.3 (continued)
(=> continued) Since M/y and N/x are continuous on R, and (3) follows. (<=) Not in text – see link on class web page for proof. 

7 Example 1 We now look at an example! Keep in mind that F/x = M and F/y = N must hold! (Definition of exact!) Solve (1+y2+xy2)dx + (x2y+y+2xy)dy = 0 (8) Solution: Note that the techniques we’ve learned before this section will not work. Check if (8) is exact via Theorem 2.3.

8 }= Example 1 (continued) Therefore (8) is exact.
Hence solutions to (8) will be of the form F(x,y) = C, where

9 Example 1 (continued) Integrate (9) with respect to x:

10 Example 1 (continued) Differentiate (11) with respect to y and use (10): (10)


Download ppt "Differentials; Exact Equations"

Similar presentations


Ads by Google