Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tangent Lines Skill 48.

Similar presentations


Presentation on theme: "Tangent Lines Skill 48."β€” Presentation transcript:

1 Tangent Lines Skill 48

2 Objective HSG-C.2: Students are responsible for using properties of tangents to circles.

3 Definitions A tangent to a circle is a line in the plane of the circle that intersects the circle in exactly one point. The point of where a circle and a tangent intersect is the point of tangency.

4 Theorem 79: Tangent Perpendicular to Radius
If a line is tangent to a circle, then the line is perpendicular to the radius at the point of tangency. P l O 𝑢𝑷 βŠπ’

5 Theorem 80: Radius Perpendicular to Tangent
If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle. P l O 𝒍 π’Šπ’” π’•π’‚π’π’ˆπ’†π’π’• 𝒕𝒐 βŠ™π‘Ά

6 Theorem 81: Congruent Tangents
If two tangent segments to a circle share a common endpoint outside the circle, then the two segments are congruent. A B C O 𝑨𝑩 β‰… π‘ͺ𝑩

7 Example 1; Finding Angle Measures
a) 𝑀𝐿 and 𝑀𝑁 are tangent to βŠ™π‘‚. What is the value of x? π’Žβˆ π‘³+π’Žβˆ π‘΄+π’Žβˆ π‘΅+π’Žβˆ π‘Ά=πŸπŸ–πŸŽ π’βˆ’πŸ πŸ—πŸŽ+𝒙+πŸ—πŸŽ+πŸπŸπŸ•=πŸπŸ–πŸŽ πŸ’βˆ’πŸ O M N L πŸπŸ—πŸ•+𝒙=πŸ‘πŸ”πŸŽ 𝒙=πŸ”πŸ‘ xα΅’ 117α΅’ The measure of π’Žβˆ π‘΄ is 63α΅’.

8 Example 1; Finding Angle Measures
b) 𝐸𝐷 is tangent to βŠ™π‘‚. What is the value of x? π’Žβˆ π‘«+π’Žβˆ π‘¬+πŸ‘πŸ–=πŸπŸ–πŸŽ O E D πŸ—πŸŽ+𝒙+πŸ‘πŸ–=πŸπŸ–πŸŽ xα΅’ πŸπŸπŸ–+𝒙=πŸπŸ–πŸŽ 𝒙=πŸ“πŸ 38α΅’ The measure of π’Žβˆ π‘¬ is 52α΅’.

9 Example 2; Finding Distance
a) The CN Tower in Toronto, Canada, has an observation deck 447 m above ground level. About how far is it from the observation deck to the horizon? Earth’s radius is about 6400 km. Convert meters to kilometers πŸ’πŸ’πŸ• π’Ž=.πŸ’πŸ’πŸ• π’Œπ’Ž Recall the Pythagorean Theorem 𝒂= ? 𝒃=πŸ”πŸ’πŸŽπŸŽ 𝒄=πŸ”πŸ’πŸŽπŸŽ.πŸ’πŸ’πŸ• a c b 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 𝒂 𝟐 + πŸ”πŸ’πŸŽπŸŽ 𝟐 = πŸ”πŸ’πŸŽπŸŽ.πŸ’πŸ’πŸ• 𝟐 𝒂 𝟐 +πŸ’πŸŽπŸ—πŸ”πŸŽπŸŽπŸŽπŸŽ=πŸ’πŸŽπŸ—πŸ”πŸ“πŸ•πŸπŸ.πŸ– 𝒂 𝟐 =πŸ“πŸ•πŸπŸ.πŸ– 𝒂=πŸ•πŸ“.πŸ”πŸ’ π’Œπ’Ž

10 Example 2; Finding Distance
b) What is the distance to the horizon that a person can see on a clear day from an airplane 2 mi above Earth? The Earth’s radius is about 4000 miles. Recall the Pythagorean Theorem 𝒂= ? 𝒃=πŸ’πŸŽπŸŽπŸŽ 𝒄=πŸ’πŸŽπŸŽπŸ 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 a c b 𝒂 𝟐 + πŸ’πŸŽπŸŽπŸŽ 𝟐 = πŸ’πŸŽπŸŽπŸ 𝟐 𝒂 𝟐 +πŸπŸ”πŸŽπŸŽπŸŽπŸŽπŸŽπŸŽ=πŸπŸ”πŸŽπŸπŸ”πŸŽπŸŽπŸ’ 𝒂 𝟐 =πŸπŸ”πŸŽπŸŽπŸ’ 𝒂=πŸπŸπŸ”.πŸ“ π’Žπ’Š

11 Example 3; Finding a Radius
a) What is the radius of βŠ™π΄ b 12 A a x 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 8 x c 𝒙 𝟐 + 𝟏𝟐 𝟐 = 𝒙+πŸ– 𝟐 𝒙 𝟐 +πŸπŸ’πŸ’= 𝒙 𝟐 +πŸπŸ”π’™+πŸ”πŸ’ πŸ–πŸŽ=πŸπŸ”π’™ 𝒙=πŸ“

12 Example 3; Finding a Radius
b) What is the radius of βŠ™π΅? b 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 10 𝒙 𝟐 + 𝟏𝟎 𝟐 = 𝒙+πŸ” 𝟐 B a x 6 𝒙 𝟐 +𝟏𝟎𝟎= 𝒙 𝟐 +πŸπŸπ’™+πŸ‘πŸ” c x πŸ”πŸ’=πŸπŸπ’™ 𝒙= πŸπŸ” πŸ‘

13 Example 4; Identifying a Tangent
a) Is 𝑀𝐿 tangent to βŠ™π‘ at L? Explain. N M L 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 c 25 πŸ• 𝟐 + πŸπŸ’ 𝟐 = πŸπŸ“ 𝟐 πŸ’πŸ—+πŸ“πŸ•πŸ”=πŸ”πŸπŸ“ 24 b 7 a πŸ”πŸπŸ“=πŸ”πŸπŸ“ Yes, 𝑀𝐿 is tangent to βŠ™π‘ at L, because Theorem 70.

14 Example 4; Identifying a Tangent
b) If 𝑁𝐿=4, 𝑀𝐿=7, π‘Žπ‘›π‘‘ 𝑁𝑀=8, is 𝑀𝐿 tangent to βŠ™π‘ at L? Explain. N M L 𝒂 𝟐 + 𝒃 𝟐 = 𝒄 𝟐 c 8 πŸ’ 𝟐 + πŸ• 𝟐 = πŸ– 𝟐 πŸπŸ”+πŸ’πŸ—=πŸ”πŸ’ 7 b 4 a πŸ”πŸ“β‰ πŸ”πŸ’ No, 𝑀𝐿 does not create a perpendicular with 𝑡𝑳 .

15 Example 5; Circles Inscribed in Polygons
a) βŠ™π‘‚ is inscribed in βˆ†π΄π΅πΆ. What is the perimeter of βˆ†π΄π΅πΆ. O C B A D E F 𝑩𝑫=𝑩𝑬=πŸπŸ“ 𝑨𝑫=𝑨𝑭=𝟏𝟎 15 cm π‘ͺ𝑭=π‘ͺ𝑬=πŸ– 𝑷=πŸπŸ“+πŸπŸ“+πŸ–+πŸ–+𝟏𝟎+𝟏𝟎 8 cm 𝑷=πŸ‘πŸŽ+πŸπŸ”+𝟐𝟎 10 cm 𝑷=πŸ”πŸ” π’„π’Ž

16 Example 5; Circles Inscribed in Polygons
b) βŠ™π‘‚ is inscribed in βˆ†π‘ƒπ‘„π‘…, which has a perimeter of 88 π‘π‘š. What is the length of π‘„π‘Œ ? O R Q P Y X Z 𝑷𝑿=𝑷𝒁=πŸπŸ“ 𝑹𝒁=𝑹𝒀=πŸπŸ• 𝑷=πŸπŸ“+πŸπŸ“+πŸπŸ•+πŸπŸ•+𝑸𝒀+𝑸𝑿 15 cm πŸ–πŸ–=πŸ‘πŸŽ+πŸ‘πŸ’+𝟐 𝑸𝒀 πŸ–πŸ–=πŸ”πŸ’+𝟐 𝑸𝒀 17 cm πŸπŸ’=𝟐 𝑸𝒀 𝑸𝒀=𝟏𝟐 π’„π’Ž

17 #48: Tangent Lines Questions? Summarize Notes Homework Quiz


Download ppt "Tangent Lines Skill 48."

Similar presentations


Ads by Google