Presentation is loading. Please wait.

Presentation is loading. Please wait.

In Voltaire’s “Elémens de la Theorie de Newton“ (1738)

Similar presentations


Presentation on theme: "In Voltaire’s “Elémens de la Theorie de Newton“ (1738)"— Presentation transcript:

1 In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
Harry Kroto 2004

2 Fraunhofer Absorption Lines in the Sun’s Spectrum
Na D lines Orange street lamps contain sodium Harry Kroto 2004

3 Harry Kroto 2004

4 Emission Spectra from Nebulae
Harry Kroto 2004

5 Harry Kroto 2004

6 Photon from local star Harry Kroto 2004

7 photoionisation Harry Kroto 2004

8 recombination Harry Kroto 2004

9 Harry Kroto 2004

10 Harry Kroto 2004

11 Harry Kroto 2004

12 H Atom ElectronicTransitions in the Radio Range
Harry Kroto 2004

13 Hydrogen atom E = 2R/n3 Harry Kroto 2004

14 Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm)
a300 = 0.5x10-3 cm = mm Harry Kroto 2004

15 Energy Levels E(n) = - R/n2 Harry Kroto 2004

16 Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) Harry Kroto 2004

17 Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1
Harry Kroto 2004

18 For n= -1  emission lines
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n=  emission lines Harry Kroto 2004

19 For n= -1  emission lines n2 = n+1
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n=  emission lines n2 = n+1 n1 = n Harry Kroto 2004

20 For n= -1  emission lines n2 = n+1
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n=  emission lines n2 = n+1 n1 = n Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004

21 For n= -1  emission lines n2 = n+1 101
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n=  emission lines n2 = n+1 101 100 n1 = n 100 Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004

22 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
Harry Kroto 2004

23 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
Harry Kroto 2004

24 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] Harry Kroto 2004

25 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] Harry Kroto 2004

26 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] Harry Kroto 2004

27 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] Harry Kroto 2004

28 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) Harry Kroto 2004

29 Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) F(n) ~ 2R/n3 Harry Kroto 2004

30 F(n) ~ 2x109678/n3 (cm-1) Harry Kroto 2004

31 F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Harry Kroto 2004

32 F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 Harry Kroto 2004

33 F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 = ( – 1)10-4 = x10-4 Harry Kroto 2004

34 F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 = ( – 1)10-4 = x10-4 cm-1 = MHz Harry Kroto 2004

35 Hydrogen atom E = 2R/n3 Harry Kroto 2004


Download ppt "In Voltaire’s “Elémens de la Theorie de Newton“ (1738)"

Similar presentations


Ads by Google