Download presentation
Presentation is loading. Please wait.
Published byTobias de Jong Modified over 5 years ago
1
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
Harry Kroto 2004
2
Fraunhofer Absorption Lines in the Sun’s Spectrum
Na D lines Orange street lamps contain sodium Harry Kroto 2004
3
Harry Kroto 2004
4
Emission Spectra from Nebulae
Harry Kroto 2004
5
Harry Kroto 2004
6
Photon from local star Harry Kroto 2004
7
photoionisation Harry Kroto 2004
8
recombination Harry Kroto 2004
9
Harry Kroto 2004
10
Harry Kroto 2004
11
Harry Kroto 2004
12
H Atom ElectronicTransitions in the Radio Range
Harry Kroto 2004
13
Hydrogen atom E = 2R/n3 Harry Kroto 2004
14
Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm)
a300 = 0.5x10-3 cm = mm Harry Kroto 2004
15
Energy Levels E(n) = - R/n2 Harry Kroto 2004
16
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) Harry Kroto 2004
17
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = 109678 cm-1
Harry Kroto 2004
18
For n= -1 emission lines
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n= emission lines Harry Kroto 2004
19
For n= -1 emission lines n2 = n+1
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n= emission lines n2 = n+1 n1 = n Harry Kroto 2004
20
For n= -1 emission lines n2 = n+1
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n= emission lines n2 = n+1 n1 = n Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004
21
For n= -1 emission lines n2 = n+1 101
Energy Levels E(n) = - R/n2 F(n) = - R/n2 (in cm-1) R = cm-1 For n= emission lines n2 = n+1 101 100 n1 = n 100 Transition Frequencies F(n1) = - R[ 1/n22 – 1/n12] Harry Kroto 2004
22
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
Harry Kroto 2004
23
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
Harry Kroto 2004
24
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] Harry Kroto 2004
25
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] Harry Kroto 2004
26
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] Harry Kroto 2004
27
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] Harry Kroto 2004
28
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) Harry Kroto 2004
29
Transition Frequencies F(n1) = - R[1/n22 – 1/n12]
F(n) = - R[n2 – (n+1)2]/[(n+1)2n2] F(n) = R[(n+1)2 – n2]/[(n+1)2n2] F(n) = R[(n2 + 2n +1 - n2)/[(n+1)2n2] F(n) = R[(2n+1)/(n+1)2n2] F(n) ~ R2n/n4 (for large n, n~n+1) F(n) ~ 2R/n3 Harry Kroto 2004
30
F(n) ~ 2x109678/n3 (cm-1) Harry Kroto 2004
31
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Harry Kroto 2004
32
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 Harry Kroto 2004
33
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 = ( – 1)10-4 = x10-4 Harry Kroto 2004
34
F(n) ~ 2x109678/n3 (cm-1) For n = 100 F(100) ~ 0.2194cm-1 ~ 6581MHz
Accurate calculation 1/ /1002 = ( – 1)10-4 = x10-4 cm-1 = MHz Harry Kroto 2004
35
Hydrogen atom E = 2R/n3 Harry Kroto 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.