Presentation is loading. Please wait.

Presentation is loading. Please wait.

1-2 Measuring and Constructing Segments Warm Up Lesson Presentation

Similar presentations


Presentation on theme: "1-2 Measuring and Constructing Segments Warm Up Lesson Presentation"— Presentation transcript:

1 1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Lesson Quiz Holt McDougal Geometry Holt Geometry

2 Warm Up Simplify. 1. 7 – (–3) 2. –1 – (–13) 3. |–7 – 1|
1. 7 – (–3) 2. –1 – (–13) 3. |–7 – 1| Solve each equation. 4. 2x + 3 = 9x – x = 4x – 5 6. How many numbers are there between and ? 10 12 8 2 5 Infinitely many

3 Objectives Use length and midpoint of a segment.
Construct midpoints and congruent segments.

4

5 The distance between any two points is the absolute value of the difference of the coordinates. If the coordinates of points A and B are a and b, then the distance between A and B is |a – b| or |b – a|. The distance between A and B is also called the length of AB, or AB. AB = |a – b| or |b - a| A a B b

6 Example 1: Finding the Length of a Segment
Find each length. A. BC B. AC BC = |1 – 3| AC = |–2 – 3| = |1 – 3| = |– 5| = 2 = 5

7 Check It Out! Example 1 Find each length. a. XY b. XZ

8 Congruent segments are segments that have the same length
Congruent segments are segments that have the same length. In the diagram, PQ = RS, so you can write PQ  RS. This is read as “segment PQ is congruent to segment RS.” Tick marks are used in a figure to show congruent segments.

9 In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and AB + BC = AC.

10 Example 3B: Using the Segment Addition Postulate
M is between N and O. Find NO. NM + MO = NO Seg. Add. Postulate 17 + (3x – 5) = 5x + 2 Substitute the given values 3x + 12 = 5x + 2 Simplify. – – 2 Subtract 2 from both sides. 3x + 10 = 5x Simplify. –3x –3x Subtract 3x from both sides. 10 = 2x Divide both sides by 2. 2 5 = x

11 Example 3B Continued M is between N and O. Find NO. NO = 5x + 2 = 5(5) + 2 Substitute 5 for x. = 27 Simplify.

12 The midpoint M of AB is the point that bisects, or divides, the segment into two congruent segments. If M is the midpoint of AB, then AM = MB. So if AB = 6, then AM = 3 and MB = 3.

13 Example 5: Using Midpoints to Find Lengths
D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. E D 4x + 6 7x – 9 F Step 1 Solve for x. ED = DF D is the mdpt. of EF. 4x + 6 = 7x – 9 Substitute 4x + 6 for ED and 7x – 9 for DF. –4x –4x Subtract 4x from both sides. 6 = 3x – 9 Simplify. Add 9 to both sides. 15 = 3x Simplify.

14 Example 5 Continued D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. E D 4x + 6 7x – 9 F x = Divide both sides by 3. x = 5 Simplify.


Download ppt "1-2 Measuring and Constructing Segments Warm Up Lesson Presentation"

Similar presentations


Ads by Google