Presentation is loading. Please wait.

Presentation is loading. Please wait.

Monomial Division.

Similar presentations


Presentation on theme: "Monomial Division."β€” Presentation transcript:

1 Monomial Division

2 Example 1 Divide π‘₯ 7 by π‘₯ 2 . Use the rules of exponents to simplify the quotient of the powers of the same base: subtract the exponents. π‘₯ 7 π‘₯ 2 = π‘₯ 7βˆ’2 = π‘₯ 5

3 Practice Problem 1 Divide π‘Ž 9 by π‘Ž 4 .
Use the rules of exponents to simplify the quotient of the powers of the same base. π‘Ž 9 π‘Ž 4 = π‘Ž

4 Example 2 Divide π‘Ž 5 𝑏 6 by π‘Ž 4 𝑏 3 . Use the rules of exponents to simplify the quotient of the powers of the same base: subtract the exponents. Do not combine powers of different bases. π‘Ž 5 𝑏 6 π‘Ž 4 𝑏 3 = π‘Ž 5βˆ’4 𝑏 6βˆ’3 = π‘Ž 1 𝑏 3 =π‘Ž 𝑏 3

5 Practice Problem 2 Divide 𝑝 8 π‘ž 9 by 𝑝 2 π‘ž 7 .
Use the rules of exponents to simplify the quotient of the powers of the same base. Do not combine powers of different bases. 𝑝 8 π‘ž 9 𝑝 2 π‘ž 7 = 𝑝 π‘ž

6 Example 3 Divide 12π‘š 10 𝑛 7 by 3 π‘š 3 𝑛 5 . Cancel out the Greatest Common Factor (GCF) of the numerical coefficient. GCF of 12 and 3 is 3; 12 Γ· 3 = 4.Β  Use the rules of exponents to simplify the quotient of the powers of the same base. 12 π‘š 10 𝑛 7 3π‘š 3 𝑛 5 =4 π‘š 10βˆ’3 𝑛 7βˆ’5 = 4π‘š 7 𝑛 2

7 Practice Problem 3 Divide 24π‘₯ 7 𝑦 11 by 8 π‘₯ 4 𝑦 6 .
Cancel out the Greatest Common Factor (GCF) of the numerical coefficients. GCF of 24 and 8 is ; 24 Γ· = Β  . Use the rules of exponents to simplify the quotient of the powers of the same base. 24 π‘₯ 7 𝑦 π‘₯ 4 𝑦 6 = π‘₯ 𝑦

8 Practice Problem 4 Divide 28π‘Ž 6 𝑏 7 𝑐 4 by 7 π‘Ž 6 𝑏 𝑐 2 .
Cancel out the Greatest Common Factor (GCF) of the numerical coefficients. GCF of 28 and 7 is ; 28Γ· = Β . Use the rules of exponents to simplify the quotient of the powers of the same base Recall that π‘Ž 0 =1 and 𝑏 1 =𝑏. 28 π‘Ž 6 𝑏 7 𝑐 4 7π‘Ž 6 𝑏𝑐 2 = 𝑏 𝑐

9 Exercises 1. 𝑧 12 𝑧 𝑑 10 5𝑑 π‘Ž 6 𝑏 11 9π‘Ž 5 𝑏 π‘₯ 8 𝑦 13 𝑧 4π‘₯ 2 𝑦 5. 20𝑝 4 π‘ž 7 π‘Ÿ 12 2π‘π‘ž 7 π‘Ÿ 4

10 Answer Key Practice Problems 1. π‘Ž 9 π‘Ž 4 = π‘Ž 9βˆ’4 = π‘Ž 5 2. 𝑝 8 π‘ž 9 𝑝 2 π‘ž 7 = 𝑝 8βˆ’2 π‘ž 9βˆ’7 = 𝑝 6 π‘ž 2 3. GCF of 24 and 8 is 8; 24 Γ· 8 = π‘₯ 7 𝑦 11 8π‘₯ 4 𝑦 6 = 3π‘₯ 7βˆ’4 𝑦 11βˆ’6 =3 π‘₯ 3 𝑦 5 4. GCF of 28 and 7 is 7, 28 Γ· 7 = π‘Ž 6 𝑏 7 𝑐 4 7π‘Ž 6 𝑏𝑐 2 = 4π‘Ž 6βˆ’6 𝑏 7βˆ’1 𝑐 4βˆ’2 =4 𝑏 6 𝑐 2

11 Answer Key Continued Exercises 1. 𝑧 12 𝑧 7 = 𝑧 12βˆ’7 = 𝑧 5
1. 𝑧 12 𝑧 7 = 𝑧 12βˆ’7 = 𝑧 5 𝑑 𝑑 4 =5 𝑑 10βˆ’4 =5 𝑑 6 π‘Ž 6 𝑏 π‘Ž 5 𝑏 9 =4 π‘Ž 6βˆ’5 𝑏 11βˆ’9 =4π‘Ž 𝑏 2 4. 8π‘₯ 8 𝑦 13 𝑧 4π‘₯ 2 𝑦 =2 π‘₯ 8βˆ’2 𝑦 13βˆ’1 𝑧=2 π‘₯ 6 𝑦 12 𝑝 4 π‘ž 7 π‘Ÿ π‘π‘ž 7 π‘Ÿ 4 =10 𝑝 4βˆ’1 π‘ž 7βˆ’7 π‘Ÿ 12βˆ’4 =10 𝑝 3 π‘Ÿ 8


Download ppt "Monomial Division."

Similar presentations


Ads by Google