Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multiplying Polynomials

Similar presentations


Presentation on theme: "Multiplying Polynomials"— Presentation transcript:

1 Multiplying Polynomials
6-2 Multiplying Polynomials Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

2 Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2)
5. xy(7x2) 7x3y 6. 3y2(–3y) –9y3

3 Objectives Multiply polynomials.
Use binomial expansion to expand binomial expressions that are raised to positive integer powers.

4 To multiply a polynomial by a monomial, use the Distributive Property and the Properties of Exponents.

5 Example 1: Multiplying a Monomial and a Polynomial
Find each product. A. 4y2(y2 + 3) 4y2(y2 + 3) 4y2  y2 + 4y2  3 Distribute. 4y4 + 12y2 Multiply. B. fg(f4 + 2f3g – 3f2g2 + fg3) fg(f4 + 2f3g – 3f2g2 + fg3) fg  f4 + fg  2f3g – fg  3f2g2 + fg  fg3 Distribute. f5g + 2f4g2 – 3f3g3 + f2g4 Multiply.

6 Check It Out! Example 1 Find each product. a. 3cd2(4c2d – 6cd + 14cd2) 3cd2(4c2d – 6cd + 14cd2) 3cd2  4c2d – 3cd2  6cd + 3cd2  14cd2 Distribute. 12c3d3 – 18c2d3 + 42c2d4 Multiply. b. x2y(6y3 + y2 – 28y + 30) x2y(6y3 + y2 – 28y + 30) x2y  6y3 + x2y  y2 – x2y  28y + x2y  30 Distribute. 6x2y4 + x2y3 – 28x2y2 + 30x2y Multiply.

7 To multiply any two polynomials, use the Distributive Property and multiply each term in the second polynomial by each term in the first. Keep in mind that if one polynomial has m terms and the other has n terms, then the product has mn terms before it is simplified.

8 Example 2A: Multiplying Polynomials
Find the product. (a – 3)(2 – 5a + a2) Multiply horizontally. (a – 3)(a2 – 5a + 2) Write polynomials in standard form. Distribute a and then –3. a(a2) + a(–5a) + a(2) – 3(a2) – 3(–5a) –3(2) a3 – 5a2 + 2a – 3a2 + 15a – 6 Multiply. Add exponents. a3 – 8a2 + 17a – 6 Combine like terms.

9 Multiply horizontally. Write polynomials in standard form.
Check It Out! Example 2a Find the product. (3b – 2c)(3b2 – bc – 2c2) Multiply horizontally. Write polynomials in standard form. (3b – 2c)(3b2 – 2c2 – bc) Distribute 3b and then –2c. 3b(3b2) + 3b(–2c2) + 3b(–bc) – 2c(3b2) – 2c(–2c2) – 2c(–bc) Multiply. Add exponents. 9b3 – 6bc2 – 3b2c – 6b2c + 4c3 + 2bc2 9b3 – 9b2c – 4bc2 + 4c3 Combine like terms.

10 Example 3: Business Application
A standard Burly Box is p ft by 3p ft by 4p ft. A large Burly Box has 1.5 ft added to each dimension. Write a polynomial V(p) in standard form that can be used to find the volume of a large Burly Box. The volume of a large Burly Box is the product of the area of the base and height. V(p) = A(p)  h(p) The area of the base of the large Burly Box is the product of the length and width of the box. A(p) = l(p)  w(p) The length, width, and height of the large Burly Box are greater than that of the standard Burly Box. l(p) = p + 1.5, w(p) = 3p + 1.5, h(p) = 4p + 1.5

11 Example 3: Business Application
Solve A(p) = l(p)  w(p). Solve V(p) = A(p)  h(p). p + 1.5 3p2 + 6p  3p + 1.5  4p + 1.5 1.5p 4.5p2 + 9p 3p p 12p3 + 24p2 + 9p 3p2 + 6p 12p p2 + 18p The volume of a large Burly Box can be modeled by V(p) = 12p p2 + 18p

12 Example 4: Expanding a Power of a Binomial
Find the product. (a + 2b)3 (a + 2b)(a + 2b)(a + 2b) Write in expanded form. (a + 2b)(a2 + 4ab + 4b2) Multiply the last two binomial factors. Distribute a and then 2b. a(a2) + a(4ab) + a(4b2) + 2b(a2) + 2b(4ab) + 2b(4b2) a3 + 4a2b + 4ab2 + 2a2b + 8ab2 + 8b3 Multiply. a3 + 6a2b + 12ab2 + 8b3 Combine like terms.

13 Multiply the last two binomial factors.
Check It Out! Example 4a Find the product. (x + 4)4 (x + 4)(x + 4)(x + 4)(x + 4) Write in expanded form. (x + 4)(x + 4)(x2 + 8x + 16) Multiply the last two binomial factors. (x2 + 8x + 16)(x2 + 8x + 16) Multiply the first two binomial factors. Distribute x2 and then 8x and then 16. x2(x2) + x2(8x) + x2(16) + 8x(x2) + 8x(8x) + 8x(16) + 16(x2) + 16(8x) + 16(16) Multiply. x4 + 8x3 + 16x2 + 8x3 + 64x x + 16x x + 256 x4 + 16x3 + 96x x + 256 Combine like terms.

14 Check It Out! Example 4b Find the product. (2x – 1)3 (2x – 1)(2x – 1)(2x – 1) Write in expanded form. (2x – 1)(4x2 – 4x + 1) Multiply the last two binomial factors. Distribute 2x and then –1. 2x(4x2) + 2x(–4x) + 2x(1) – 1(4x2) – 1(–4x) – 1(1) 8x3 – 8x2 + 2x – 4x2 + 4x – 1 Multiply. 8x3 – 12x2 + 6x – 1 Combine like terms.

15 Notice the coefficients of the variables in the final product of (a + b)3. these coefficients are the numbers from the third row of Pascal's triangle. Each row of Pascal’s triangle gives the coefficients of the corresponding binomial expansion. The pattern in the table can be extended to apply to the expansion of any binomial of the form (a + b)n, where n is a whole number.

16 This information is formalized by the Binomial Theorem, which you will study further in Chapter 11.

17 Example 5: Using Pascal’s Triangle to Expand Binomial Expressions
Expand each expression. A. (k – 5)3 Identify the coefficients for n = 3, or row 3. [1(k)3(–5)0] + [3(k)2(–5)1] + [3(k)1(–5)2] + [1(k)0(–5)3] k3 – 15k2 + 75k – 125 B. (6m – 8)3 Identify the coefficients for n = 3, or row 3. [1(6m)3(–8)0] + [3(6m)2(–8)1] + [3(6m)1(–8)2] + [1(6m)0(–8)3] 216m3 – 864m m – 512

18 Identify the coefficients for n = 3, or row 3.
Check It Out! Example 5 Expand each expression. a. (x + 2)3 Identify the coefficients for n = 3, or row 3. [1(x)3(2)0] + [3(x)2(2)1] + [3(x)1(2)2] + [1(x)0(2)3] x3 + 6x2 + 12x + 8 b. (x – 4)5 Identify the coefficients for n = 5, or row 5. [1(x)5(–4)0] + [5(x)4(–4)1] + [10(x)3(–4)2] + [10(x)2(–4)3] + [5(x)1(–4)4] + [1(x)0(–4)5] x5 – 20x x3 – 640x x – 1024

19 Identify the coefficients for n = 4, or row 4.
Check It Out! Example 5 Expand the expression. c. (3x + 1)4 Identify the coefficients for n = 4, or row 4. [1(3x)4(1)0] + [4(3x)3(1)1] + [6(3x)2(1)2] + [4(3x)1(1)3] + [1(3x)0(1)4] 81x x3 + 54x2 + 12x + 1

20 3. The number of items is modeled by
Lesson Quiz Find each product. 1. 5jk(k – 2j) 5jk2 – 10j2k 2. (2a3 – a + 3)(a2 + 3a – 5) 2a5 + 6a4 – 11a3 + 14a – 15 3. The number of items is modeled by 0.3x x + 2, and the cost per item is modeled by g(x) = –0.1x2 – 0.3x + 5. Write a polynomial c(x) that can be used to model the total cost. –0.03x4 – 0.1x x2 – 0.1x + 10 4. Find the product. (y – 5)4 y4 – 20y y2 – 500y + 625 5. Expand the expression. (3a – b)3 27a3 – 27a2b + 9ab2 – b3


Download ppt "Multiplying Polynomials"

Similar presentations


Ads by Google