Presentation is loading. Please wait.

Presentation is loading. Please wait.

GCSE 3D Trigonometry & Pythagoras

Similar presentations


Presentation on theme: "GCSE 3D Trigonometry & Pythagoras"โ€” Presentation transcript:

1 GCSE 3D Trigonometry & Pythagoras
Dr J Objectives: Determine lengths within 3D diagrams by repeated application of Pythagorasโ€™ theorem. Determine angles within 3D diagrams by use of trigonometry. Last modified: 2nd January 2019

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 RECAP :: Trigonometry & Pythagoras
๐Ÿ๐Ÿ“ ๐Ÿ๐Ÿ’ ๐’™ ? ๐’™ ๐Ÿ +๐Ÿ ๐Ÿ’ ๐Ÿ =๐Ÿ ๐Ÿ“ ๐Ÿ ๐’™= ๐Ÿ ๐Ÿ“ ๐Ÿ โˆ’๐Ÿ ๐Ÿ’ ๐Ÿ =๐Ÿ• ? ๐’„๐’๐’” ๐Ÿ”๐Ÿยฐ = ๐Ÿ๐Ÿ‘ ๐’™ ๐’™= ๐Ÿ๐Ÿ‘ ๐’„๐’๐’” ๐Ÿ”๐Ÿยฐ =๐Ÿ๐Ÿ•.๐Ÿ• 62 ยฐ ๐’™ 13

4 3D Pythagoras The key here is identify some 2D triangle โ€˜floatingโ€™ in 3D space. You will usually need to use Pythagoras twice. Find the length of diagonal connecting two opposite corners of a unit cube. 2 3 ? Fro Tip: Leave this as 2 rather than as a decimal. The advantage is that if we square it later, we get =2 Using the base: = 2 Using blue triangle: = 3 ๐œƒ= tan โˆ’ =35.3 1 1 1 Your Goโ€ฆ Find the length of diagonal connecting two opposite corners of a unit cube. 12 ๐Ÿ๐Ÿ‘ ? 4 3

5 Further Example 2 2 2 2 13 ๐Ÿ๐Ÿ 5 8 6 ? ? Half the base diagonal:
Hint: You may want to use Pythagoras on the square base (drawing the diagonal in) Determine the height of this pyramid. 2 ? Using Pythagoras to get the length of the diagonal across the base: ๐Ÿ ๐Ÿ + ๐Ÿ ๐Ÿ = ๐Ÿ– =๐Ÿ ๐Ÿ The length from the corner to the centre of the base is ๐Ÿ ๐Ÿ รท๐Ÿ= ๐Ÿ Then using blue triangle: ๐’‰= ๐Ÿ ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ = ๐Ÿ 2 2 Your Goโ€ฆ 5 ๐Ÿ๐Ÿ 13 Half the base diagonal: ๐Ÿ” ๐Ÿ + ๐Ÿ– ๐Ÿ ๐Ÿ =๐Ÿ“ ๐’‰= ๐Ÿ๐Ÿ‘ ๐Ÿ โˆ’ ๐Ÿ“ ๐Ÿ =๐Ÿ๐Ÿ ? 8 6

6 Further Practice [AQA FM Mock Set 4 Paper 2] A pyramid has a square base ๐ด๐ต๐ถ๐ท of sides 6cm. Vertex ๐‘‰, is directly above the centre of the base, ๐‘‹. Work out the height ๐‘‰๐‘‹ of the pyramid. ๐‘ฟ๐‘จ= ๐Ÿ ๐Ÿ ๐Ÿ” ๐Ÿ + ๐Ÿ” ๐Ÿ =๐Ÿ‘ ๐Ÿ ๐‘ฝ๐‘ฟ= ๐Ÿ๐ŸŽ ๐Ÿ โˆ’ ๐Ÿ‘ ๐Ÿ ๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ๐Ÿ– = ๐Ÿ–๐Ÿ ?

7 Angles between lines and planes
A plane is: A flat 2D surface (not necessary horizontal). ? When we want to find the angle between a line and a plane, use the โ€œdrop methodโ€ โ€“ imagine the line is a pen which you drop onto the plane. The angle you want is between the original and dropped lines. ๐œƒ Click for Fromanimation

8 Example [Edexcel IGCSE June2011-4H Q22]ย The diagram shows a cuboid ๐ด๐ต๐ถ๐ท๐ธ๐น๐บ๐ป.ย  ๐ด๐ต = 5cm. ๐ต๐ถ = 7cm. ๐ด๐ธ = 3cm. Determine the length ๐ด๐บ. Calculate the size of the angle between AG and the plane ๐ด๐ต๐ถ๐ท.ย Give your answer correct to 1 decimal place. ? ๐‘จ๐‘ช= ๐Ÿ“ ๐Ÿ + ๐Ÿ• ๐Ÿ = ๐Ÿ•๐Ÿ’ ๐‘จ๐‘ฎ โ€˜dropsโ€™ onto ๐‘จ๐‘ช, so we want the angle ๐‘ฎ๐‘จ๐‘ช: ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ‘ ๐Ÿ•๐Ÿ’ =๐Ÿ๐Ÿ—.๐Ÿยฐ

9 Test Your Understanding
Determine the angle between the line AB and the base of the cube. [Edexcel IGCSE Jan2013-3H Q21] The diagram shows a pyramid with a horizontal rectangular baseย PQRS. PQย = 16 cm. QRย = 10 cm. Mย is the midpoint of the lineย PR. The vertex,ย T, is vertically aboveย M. MTย = 15 cm. Calculate the size of the angle betweenย TPย and the baseย PQRS. Give your answer correct to 1 decimal place. ๐ต 2 1 1 ๐ด 1 ? ๐‘จ๐‘ฉ= ๐Ÿ ๐Ÿ + ๐Ÿ ๐Ÿ = ๐Ÿ Angle: ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ ๐Ÿ =๐Ÿ‘๐Ÿ“.๐Ÿ‘ยฐ ๐‘ป๐‘ท โ€˜dropsโ€™ onto ๐‘ท๐‘ด. ๐‘ท๐‘ด= ๐Ÿ๐Ÿ” ๐Ÿ + ๐Ÿ๐ŸŽ ๐Ÿ ๐Ÿ = ๐Ÿ–๐Ÿ— โˆ ๐‘ป๐‘ท๐‘ด= ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ๐Ÿ“ ๐Ÿ–๐Ÿ— =๐Ÿ“๐Ÿ•.๐Ÿ–ยฐ ?

10 Angles between two planes
This is more of a Further Maths/Additional Maths skill, but just in caseโ€ฆ To find angle between two planes: Use โ€˜line of greatest slopeโ€™* on one plane, before again โ€˜droppingโ€™ down. * i.e. what direction would be ball roll down? ๐œƒ line of greatest slope ? ๐ต Example: Find the angle between the plane ๐ด๐ต๐ถ๐ท and the horizontal plane. ๐œฝ= ๐ฌ๐ข๐ง โˆ’๐Ÿ ๐Ÿ‘ ๐Ÿ” =๐Ÿ‘๐ŸŽยฐ 6๐‘๐‘š ๐ถ ๐œฝ 3๐‘๐‘š line of greatest slope ? ๐ด ๐ท

11 Two Plane Example 2 2 2 2 1 ๐ธ ๐ท ๐ถ ๐‘‚ ? ๐ด ๐ต ๐ธ ? Suitable diagram
Find the angle between the planes ๐ต๐ถ๐ธ and ๐ด๐ต๐ถ๐ท. 2 2 We earlier used Pythagoras to establish the height of the pyramid. Why would it be wrong to use the angle โˆ ๐ธ๐ถ๐‘‚? ๐‘ฌ๐‘ช is not the line of greatest slope. ๐ท ๐ถ ๐‘‚ 2 ? ๐ด 2 ๐ต ๐ธ ? Suitable diagram ? Solution 2 ๐ท ๐ถ ๐œƒ= tan โˆ’ =54.7ยฐ ๐œƒ 1 ๐‘‚ From ๐ธ a ball would roll down to the midpoint of ๐ต๐ถ. ๐ด ๐ต

12 Test Your Understanding
AQA FM Jan 2013 Paper 2 Q23 The diagram shows a cuboid ๐ด๐ต๐ถ๐ท๐‘ƒ๐‘„๐‘…๐‘† and a pyramid ๐‘ƒ๐‘„๐‘…๐‘†๐‘‰. ๐‘‰ is directly above the centre ๐‘‹ of ๐ด๐ต๐ถ๐ท. a) Work out the angle between the line ๐‘‰๐ด and the plane ๐ด๐ต๐ถ๐ท. (Reminder: โ€˜Dropโ€™ ๐‘‰๐ด onto the plane) ๐‘จ๐‘ฟ= ๐Ÿ ๐Ÿ ๐Ÿ” ๐Ÿ + ๐Ÿ๐ŸŽ ๐Ÿ = ๐Ÿ‘๐Ÿ’ โˆ ๐‘ฝ๐‘จ๐‘ฟ= ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ“ ๐Ÿ‘๐Ÿ’ =๐Ÿ’๐ŸŽ.๐Ÿ”ยฐ b) Work out the angle between the planes ๐‘‰๐‘„๐‘… and ๐‘ƒ๐‘„๐‘…๐‘†. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ ๐Ÿ“ =๐Ÿ๐Ÿ.๐Ÿ–ยฐ ? ?

13 Exercise ? ? ? ? ๐ต ๐ต 8 6 ๐ถ ๐ถ 8 5 ๐ด 8 ๐ด 4 (on provided worksheet)
A cube has sides 8cm. Find: a) The length ๐ด๐ต. ๐Ÿ– ๐Ÿ‘ b) The angle between ๐ด๐ต and the horizontal plane. ๐Ÿ‘๐Ÿ“.๐Ÿ‘ยฐ 1 2 For the following cuboid, find: a) The length ๐ด๐ต. ๐Ÿ•๐Ÿ• =๐Ÿ–.๐Ÿ•๐Ÿ• b) The angle between ๐ด๐ต and the horizontal plane. ๐Ÿ’๐Ÿ‘.๐Ÿยฐ ? ? ? ? ๐ต ๐ต 8 6 ๐ถ ๐ถ 8 5 ๐ด 8 ๐ด 4

14 Exercise 16 ๐Ÿ–๐Ÿ• 13 24 10 ? ? ? ? ๐ด ๐ต ๐ธ ๐ท ๐ถ (on provided worksheet) 3 4
A radio tower 150m tall has two support cables running 300m due East and some distance due South, anchored at ๐ด and ๐ต. The angle of inclination to the horizontal of the latter cable is 50ยฐ as indicated. 13 ๐Ÿ–๐Ÿ• 16 ๐ต ๐ธ 24 150๐‘š ๐ท 10 ๐ถ ๐ด Determine the height of the pyramid. ๐Ÿ–๐Ÿ• =๐Ÿ—.๐Ÿ‘๐Ÿ‘ b) Determine the angle between the line ๐ด๐ต and the base ๐ต๐ถ๐ท๐ธ of the pyramid. โˆ ๐‘จ๐‘ฉ๐‘ฌ=๐’•๐’‚ ๐’ โˆ’๐Ÿ ๐Ÿ–๐Ÿ• ๐Ÿ๐Ÿ‘ =๐Ÿ‘๐Ÿ“.๐Ÿ•ยฐ 300๐‘š 50ยฐ ? ๐ต a) Find the angle between the cable attached to ๐ด and the horizontal plane. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ๐Ÿ“๐ŸŽ ๐Ÿ‘๐ŸŽ๐ŸŽ =๐Ÿ๐Ÿ”.๐Ÿ”ยฐ b) Find the distance between ๐ด and ๐ต m ? ? ?

15 Exercise ? ? (on provided worksheet)
[AQA FM Mock Set 1 Paper 2] The diagram shows a vertical mast, ๐ด๐ต, 12 metres high. Points ๐ต, ๐ถ, ๐ท are on a horizontal plane. Point ๐ถ is due West of ๐ต. Calculate ๐ถ๐ท Calculate the bearing of ๐ท from ๐ถ to the nearest degree. 5 a) ๐‘ฉ๐‘ช= ๐Ÿ๐Ÿ ๐ญ๐š๐ง ๐Ÿ‘๐Ÿ“ =๐Ÿ๐Ÿ•.๐Ÿ๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ” ๐‘ฉ๐‘ซ= ๐Ÿ๐Ÿ ๐ญ๐š๐ง ๐Ÿ๐Ÿ‘ยฐ =๐Ÿ๐Ÿ–.๐Ÿ๐Ÿ•๐ŸŽ๐Ÿ๐Ÿ๐Ÿ– ๐‘ช๐‘ซ= ๐Ÿ๐Ÿ•.๐Ÿโ€ฆ ๐Ÿ + ๐Ÿ๐Ÿ–.๐Ÿโ€ฆ ๐Ÿ =๐Ÿ‘๐Ÿ‘.๐ŸŽ๐Ÿ”๐’Ž b) ๐Ÿ—๐ŸŽยฐ+ ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ๐Ÿ–.๐Ÿ๐Ÿ• ๐Ÿ๐Ÿ•.๐Ÿ๐Ÿ’ =๐Ÿ๐Ÿ’๐Ÿ—ยฐ ? ?

16 Exercise ? ? (on provided worksheet) 6 7
[Edexcel GCSE June H Q18] The diagram represents a prism. ๐ด๐ธ๐น๐ทย is a rectangle. ๐ด๐ต๐ถ๐ทย is a square. ๐ธ๐ตย andย ๐น๐ถย are perpendicular to planeย ๐ด๐ต๐ถ๐ท. ๐ด๐ต=60ย cm. ๐ด๐ท=60ย cm. Angleย ๐ด๐ต๐ธ=90ยฐ. Angleย ๐ต๐ด๐ธ=30ยฐ. Calculate the size of the angle that the lineย ๐ท๐ธย makes with the planeย ๐ด๐ต๐ถ๐ท. Give your answer correct to 1 decimal place. Solution: ๐Ÿ๐Ÿ.๐Ÿยฐ [Edexcel IGCSE May2013-4H Q22] The diagram shows a triangular prism with a horizontal rectangular baseย ABCD. ABย = 10 cm.ย ย BCย = 7 cm. Mย is the midpoint ofย AD. The vertexย Tย is vertically aboveย M. MTย = 6 cm. Calculate the size of the angle betweenย TBย and the baseย ABCD. Give your answer correct to 1 decimal place. Solution: ๐Ÿ๐Ÿ—.๐Ÿ“ยฐ ? ?

17 Exercise ๐ธ ๐ท ๐ถ ๐‘€ ๐‘‹ ๐ด ๐ต ? ? ? ? ๐ผ ๐ฝ 20cm ๐บ ๐ป 12๐‘š ๐น ๐ธ 8๐‘š ๐ท 24cm ๐ถ 7๐‘š ๐ด
(on provided worksheet) ๐ด ๐ต ๐ถ ๐ท ๐ธ ๐น ๐บ ๐ป ๐ผ ๐ฝ 8๐‘š 12๐‘š 24๐‘š 7๐‘š ๐ธ 8 9 20cm ๐ท ๐ถ ๐‘€ ๐‘‹ 24cm ๐ด 24cm ๐ต A school buys a set of new โ€˜extra comfortโ€™ chairs with its seats pyramid in shape. ๐‘‹ is at the centre of the base of the pyramid, and ๐‘€ is the midpoint of ๐ต๐ถ. By considering the triangle ๐ธ๐ต๐ถ, find the length ๐ธ๐‘€. 16cm Hence determine the angle between the triangle ๐ธ๐ต๐ถ and the plane ๐ด๐ต๐ถ๐ท. ๐œ๐จ๐ฌ โˆ’๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ” =๐Ÿ’๐Ÿ.๐Ÿ’ยฐ Frost Manor is as pictured, with ๐ธ๐น๐บ๐ป horizontally level. a) Find the angle between the line ๐ด๐บ and the plane ๐ด๐ต๐ถ๐ท. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ– ๐Ÿ๐Ÿ“ =๐Ÿ๐Ÿ•.๐Ÿ•ยฐ b) Find the angle between the planes ๐น๐บ๐ผ๐ฝ and ๐ธ๐น๐บ๐ป. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ’ ๐Ÿ๐Ÿ =๐Ÿ๐Ÿ–.๐Ÿ’ยฐ ? ? ? ?

18 Exercise ? ? ? ? (on provided worksheet)
[AQA FM June 2013 Paper 2] ๐ด๐ต๐ถ๐ท๐ธ๐น๐บ๐ป is a cuboid. ๐‘€ is the midpoint of ๐ป๐บ. ๐‘ is the midpoint of ๐ท๐ถ. Show that ๐ต๐‘= 7.5m Work out the angle between the line ๐‘€๐ต and the plane ๐ด๐ต๐ถ๐ท. ๐’•๐’‚๐’ โˆ’๐Ÿ ๐Ÿ‘ ๐Ÿ•.๐Ÿ“ =๐Ÿ๐Ÿ.๐Ÿ–ยฐ Work out the obtuse angle between the planes ๐‘€๐‘๐ต and ๐ถ๐ท๐ป๐บ. ๐Ÿ๐Ÿ–๐ŸŽโˆ’ ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ’.๐Ÿ“ ๐Ÿ” =๐Ÿ๐Ÿ’๐Ÿ‘.๐Ÿยฐ 10 [AQA FM Set 3 Paper 2] The diagram shows part of a skate ramp, modelled as a triangular prism. ๐ด๐ต๐ถ๐ท represents horizontal ground. The vertical rise of the ramp, ๐ถ๐น, is 7 feet. The distance ๐ต๐ถ=24 feet. 11 ? ? You are given that ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก= ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘Ÿ๐‘–๐‘ ๐‘’ โ„Ž๐‘œ๐‘Ÿ๐‘–๐‘ง๐‘œ๐‘›๐‘ก๐‘Ž๐‘™ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ a) The gradient of ๐ต๐น is twice the gradient of ๐ด๐น. Write down the distance ๐ด๐ถ b) Greg skates down the ramp along ๐น๐ต. How much further would he travel if he had skated along ๐น๐ด. ๐‘ญ๐‘ฉ=๐Ÿ๐Ÿ“ ๐‘จ๐‘ญ=๐Ÿ’๐Ÿ–.๐Ÿ“๐Ÿ ๐Ÿ’๐Ÿ–.๐Ÿ“๐Ÿโˆ’๐Ÿ๐Ÿ“=๐Ÿ๐Ÿ‘.๐Ÿ“๐Ÿ ? ?

19 Exercise ? ? ? ๐ผ 2 2 ๐บ 3 ๐ป 5๐‘š ๐น 3 ๐ธ 2๐‘š ๐ท 4 ๐ถ 4 4๐‘š ๐ด 8๐‘š ๐ต
(on provided worksheet) 12 ๐ผ 13 2 2 ๐บ 3 ๐ป 5๐‘š ๐น ๐ธ 3 2๐‘š ๐ท 4 ๐ถ 4 4๐‘š ๐ด 8๐‘š ๐ต A โ€˜truncated pyramidโ€™ is formed by slicing off the top of a square-based pyramid, as shown. The top and bottom are two squares of sides 2 and 4 respectively and the slope height 3. Find the angle between the sloped faces with the bottom face. ๐œ๐จ๐ฌ โˆ’๐Ÿ ๐Ÿ ๐Ÿ– =๐Ÿ”๐Ÿ—.๐Ÿ‘ยฐ a) Determine the angle between the line ๐ด๐ผ and the plane ๐ด๐ต๐ถ๐ท. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ“ ๐Ÿ ๐Ÿ“ =๐Ÿ’๐Ÿ–.๐Ÿยฐ b) Determine the angle between the planes ๐น๐ป๐ผ and ๐ธ๐น๐บ๐ป. ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ‘ ๐Ÿ’ =๐Ÿ‘๐Ÿ”.๐Ÿ—ยฐ ? ? ?

20 Exercise ? (on provided worksheet) ๐ถ 14 N Solution: ๐Ÿ•๐Ÿ”.๐Ÿ‘ยฐ 5 4 ๐ท ๐ต 3 ๐‘‹
(Knowledge of sine/cosine rules required) [Edexcel GCSEย Nov2007-6H Q25] The diagram shows a tetrahedron. AD is perpendicular to both AB and AC.ย  AB = 10 cm. AC ย = 8 cm. AD ย = 5 cm. Angle BAC = 90ยฐ. Calculate the size of angle BDC. Give your answer correct to 1 decimal place. Solution: ๐Ÿ•๐Ÿ”.๐Ÿ‘ยฐ N 5 ๐ท 4 ๐ต 3 ๐‘‹ ๐ด Determine the angle between the planes ๐ด๐ต๐ถ and ๐ด๐ต๐ท. โˆ ๐‘ซ๐‘จ๐‘ฉ= ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ’ ๐Ÿ‘ โ†’ ๐‘ซ๐‘ฟ=๐Ÿ‘ ๐ฌ๐ข๐ง ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ’ ๐Ÿ‘ = ๐Ÿ๐Ÿ ๐Ÿ“ โˆ ๐‘ช๐‘ฟ๐‘ซ= ๐ญ๐š๐ง โˆ’๐Ÿ ๐Ÿ“รท ๐Ÿ๐Ÿ ๐Ÿ“ =๐Ÿ”๐Ÿ’.๐Ÿ’ยฐ ?


Download ppt "GCSE 3D Trigonometry & Pythagoras"

Similar presentations


Ads by Google