Presentation is loading. Please wait.

Presentation is loading. Please wait.

Apply Properties of Rational Exponents

Similar presentations


Presentation on theme: "Apply Properties of Rational Exponents"β€” Presentation transcript:

1 Apply Properties of Rational Exponents
Section 6-2 Day 1 Apply Properties of Rational Exponents

2 Properties of Radicals
Product Property of Radicals 𝑛 π‘Žβˆ™π‘ = 𝑛 π‘Ž βˆ™ 𝑛 𝑏 Quotient Property of Radicals 𝑛 π‘Ž 𝑏 = 𝑛 π‘Ž 𝑛 𝑏 4 16π‘₯ = βˆ™ 4 π‘₯ =2 4 π‘₯

3 13 = = = 1 23 = = = 32 33 = = = 243 43 = = = 1024 53 = = = 3125 63 = 216 73 = 343 83 = 512

4 Example 1 Use the properties of rational exponents to simplify the expression. a.) βˆ™ = b.) ( βˆ™ ) 3 = c.) ( 2 6 βˆ™ 4 6 ) βˆ’1 6 = d.) = ( ) 3 βˆ™ ( ) 3 = 5βˆ™ ( 2 6 ) βˆ’1 6 βˆ™ ( 4 6 ) βˆ’1 6 = 2-1 β€’ 4-1 = Β½ β€’ ΒΌ = β…› 1 10 1βˆ’ = =

5 Example 2 Use the properties of radicals to simplify the expression.
b.) = 5 β€’ 2 = 10 5 32 βˆ™ = 2

6 Example 3 Write the expression in simplest form. a.) 3√104 =
3√8 β€’ 3√13 = 2 3√13

7 Example 4 Simplify the expression. a.) 7 5√12 – 5√12 =
b.) 4( ) + 8( ) = 1 6 5√12 12( )

8 Warm-Up Use the properties of radicals to simplify the expression.
4 8 βˆ™ 4 8 Write the expression in simplest form. 3 104 3 135

9 Apply Properties of Rational Exponents
Section 6-2 Day 2 Apply Properties of Rational Exponents

10 Example 5 Simplify the expression. a.) 4√625z12 = b.) (32m5n30)1/5 =
c.) 3√6x4y9z14 = 5z3 5√32m5n30 = 2mn6 3 √6 β€’ 3√x3 β€’ 3√x β€’ 3√y9 β€’ 3√z12 β€’ 3√z2 = xy3z4 3√6xz2

11 Example 6 Simplify the expression. a.) 4√12 – 2√75 =
b.) 6 3√ √24 = 4β€’βˆš4 β€’βˆš3 – 2√25 β€’βˆš3 4β€’ 2β€’βˆš3 – 2 β€’ 5 β€’βˆš3 8√3 – 10√3 = -2√3 6 3√27 β€’ 3√ √8 β€’ 3√3 6 β€’ 3 3√ β€’ 2 3√3 18 3√ √3 = 32 3√3

12 Homework Section 6-2 Pages 424 –425
3, 4, 6, 8, 11, 15, 17, 18, 20, 21, 23, 24, 26 – 28, 33, 35, 36, 40, 43 – 48, 52, 53, 57, 60, 62, 64, 69, 78, 79


Download ppt "Apply Properties of Rational Exponents"

Similar presentations


Ads by Google