Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Algorithms

Similar presentations


Presentation on theme: "Introduction to Algorithms"— Presentation transcript:

1 Introduction to Algorithms
LECTURE 16 (Chap. 22) Elementary Graph Algorithm • 22.2 Breath-first search • 22.3 Depth-first search • 22.4 Topological sort Breadth first search animation

2 Breadth first search animation
Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

3 Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1

4 Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In breadth first search, i is the first node in LIST LIST 1 next 1

5 If node i is incident to an admissible arc…
2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next

6 If node i is incident to an admissible arc…
2 4 2 2 8 1 1 1 1 5 5 7 3 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 5 3 2 next

7 If node i is incident to an admissible arc…
2 4 2 2 8 1 1 1 1 5 5 7 3 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 3 6 4 LIST 1 2 5 3 4 2 3 next

8 If node i is not incident to an admissible arc…
2 4 2 2 8 1 1 1 1 1 5 5 7 3 9 Delete node i from LIST 3 3 6 4 LIST 1 2 5 3 2 4 3 next

9 Select Node i 2 4 2 2 2 8 1 1 1 1 1 5 5 7 3 9 The first node on LIST becomes node i 3 3 6 4 LIST 1 2 5 3 2 4 3 next

10 If node i is incident to an admissible arc…
5 2 4 4 2 2 2 8 1 1 1 5 5 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 4 3 next

11 If node i is not incident to an admissible arc…
5 2 4 4 2 2 2 2 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next

12 Select a node 5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 The first node on LIST becomes node i 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next

13 If node i is incident to an admissible arc…
5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 3 2 4 5 next

14 If node i is not incident to an admissible arc…
5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 3 2 4 5 next

15 Select node 3 5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 node 3 is not incident to any admissible arcs delete node 3 from LIST 9 3 3 3 3 6 6 4 6 LIST 1 2 5 3 4 6 2 3 5 4 6 next

16 Select a node 5 2 4 4 4 2 2 8 1 1 1 5 5 7 3 i : = 4 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 2 3 4 5 next

17 If node i is incident to an admissible arc…
5 2 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 3 7 2 4 6 5 next

18 If node i is not incident to an admissible arc…
5 2 4 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next

19 Select node i 5 2 4 4 7 2 2 8 8 1 1 1 5 5 7 3 i := 6 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next

20 If node i is incident to an admissible arc…
5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 2 8 3 5 6 4 7 next

21 If node i is incident to an admissible arc…
5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 9 3 3 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 8 9 2 4 5 3 7 6 next

22 If node i is not incident to an admissible arc…
5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Delete node i from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 9 8 7 5 6 2 3 4 next

23 Select node 8 5 2 4 4 7 2 2 8 8 8 8 1 8 1 1 5 5 7 7 3 node 8 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

24 Select node 7 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 7 7 3 node 7 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

25 Select node 9 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 node 9 is not incident to an admissible arc; delete it from LIST 9 9 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next

26 Breadth first search animation
Depth First Search Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

27 Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1

28 Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In depth first search, i is the last node in LIST LIST 1 next 1

29 If node i is incident to an admissible arc…
2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next

30 Select the last node on LIST
2 4 2 2 2 8 1 1 1 1 1 5 7 9 3 6 Node 2 gets selected LIST 1 2 2 1 next

31 If node i is incident to an admissible arc…
2 4 4 2 2 2 3 8 1 1 1 1 1 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 LIST 1 2 4 3 2 1 next

32 Select 2 4 4 4 2 2 2 2 3 8 1 1 1 1 1 5 7 Select the last node on LIST
9 3 6 LIST 1 2 4 2 3 1 next

33 If node i is incident to an admissible arc…
2 4 4 4 2 2 2 2 3 8 8 4 1 1 1 1 1 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 4 8 3 4 2 1 next

34 Select 2 4 4 4 2 2 2 2 3 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 3 2 1 4 next

35 If node i is not incident to an admissible arc…
2 4 4 4 2 2 2 2 3 8 8 8 8 4 1 1 1 1 1 5 7 Delete node i from LIST 9 3 6 LIST 1 2 4 8 1 3 2 4 next

36 Select 2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 1 4 2 3 next

37 If node i is incident to an admissible arc…
2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 7 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 6 LIST 1 2 4 5 8 1 5 2 4 3 next

38 Select 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 5 1 2 5 3 4 next

39 If node i is incident to an admissible arc…
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 6 6 LIST 1 2 4 8 5 6 6 3 4 2 5 1 next

40 Select the last node on LIST
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 6 9 3 6 6 6 6 LIST 1 2 4 8 5 6 3 4 6 5 1 2 next

41 If node i is incident to an admissible arc…
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 9 3 6 6 6 7 6 LIST 1 2 4 5 8 6 9 1 7 2 4 5 3 6 next

42 Select the last node on LIST
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 1 2 4 6 5 3 next

43 If node i is incident to an admissible arc…
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 8 4 3 1 6 2 5 7 next

44 Select the last node on LIST
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 Select node 7 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 8 1 6 2 3 5 7 next

45 If node i is not incident to an admissible arc…
2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 7 from LIST 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 1 2 8 4 6 3 7 5 next

46 Select node 9 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 9 from LIST But node 9 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 8 4 2 1 7 3 5 6 next

47 Select node 6 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 But node 6 is not incident to an admissible arc. Delete node 6 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 3 2 6 7 8 1 5 next

48 Select node 5 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 5 is not incident to an admissible arc. Delete node 5 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 3 2 1 4 5 6 8 7 next

49 Select node 4 2 4 4 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 4 from LIST But node 4 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 7 1 2 5 8 4 6 3 next

50 Select node 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 2 is not incident to an admissible arc. Delete node 2 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 6 3 1 4 5 7 2 8 next

51 Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 9 9 9 9 9 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 8 5 6 9 7 2 6 9 7 3 8 5 1 4 next

52 Select node 3 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 3 from LIST But node 3 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 5 8 6 9 7 9 8 5 3 4 2 1 7 6 next

53 Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 1 from LIST But node 1 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 8 5 6 9 7 9 5 2 1 3 4 7 6 8 next

54 LIST is empty 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 The algorithm ends! 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 5 8 6 9 7 9 4 5 3 6 2 1 7 8 next

55 The depth first search tree
1 3 2 9 8 7 5 4 6 Note that each induced subtree has consecutively labeled nodes

56 Breadth first search animation
Topological Ordering Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.) Breadth first search animation

57 Preliminary to Topological Sorting
LEMMA. If each node has at least one arc going out, then the first inadmissible arc of a depth first search determines a directed cycle. COROLLARY 1. If G has no directed cycle, then there is a node in G with no arcs going. And there is at least one node in G with no arcs coming in. COROLLARY 2. If G has no directed cycle, then one can relabel the nodes so that for each arc (i,j), i < j. 1 4 6 7 3

58 Initialization 6 1 Determine the indegree of each node
LIST is the set of nodes with indegree of 0. “Next” will be the label of nodes in the topological order. 5 2 8 3 7 4 next 1 2 3 4 5 6 7 8 Node Indegree LIST 7

59 Select a node from LIST 6 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 5 2 8 3 7 7 4 1 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 3 2 1 1 1 2 7 5

60 Select a node from LIST 6 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 1 2 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 1 3 2 1 1 1 2 4 5 7 6

61 Select a node from LIST 3 6 6 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 2 1 3 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 1 2 1 1 2 4 5 7 2 6

62 Select a node from LIST 3 6 6 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 4 3 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 1 2 4 7 5 6 2 1

63 Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 3 5 2 4 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 2 1 1 1 2 1 4 7 5 1 2 6

64 Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 4 1 6 6 3 5 4 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 2 1 1 2 1 2 1 4 6 7 5 8

65 Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 7 2 5 5 2 2 8 8 3 4 7 7 4 4 1 6 2 7 4 5 3 6 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 1 1 2 1 1 1 2 8 3

66 Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next;
update indegrees update LIST Select a node from LIST and delete it. 7 8 2 5 5 2 2 8 8 3 3 4 7 7 4 4 1 6 2 5 8 6 7 3 1 4 next List is empty. The algorithm terminates with a topological order of the nodes 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 2 1 3 1 2 1 1 2 1 3


Download ppt "Introduction to Algorithms"

Similar presentations


Ads by Google