Download presentation
Presentation is loading. Please wait.
1
Memories: RAM, ROM Advanced Testbenches
ECE 545 Lecture 9 Memories: RAM, ROM Advanced Testbenches ECE 545 – Introduction to VHDL
2
Sources & Required Reading
Volnei A. Pedroni, Circuit Design with VHDL Chapter 9.10, Memory Design Chapter 7.1, Constant Chapter 3.6, Records Chapter 11.6, Assert Sundar Rajan, Essential VHDL: RTL Synthesis Done Right Chapter 14, starting from “Design Verification” ECE 545 – Introduction to VHDL
3
Generic Memories ECE 545 – Introduction to VHDL
4
Generic RAM (1) LIBRARY ieee; USE ieee.std_logic_1164.all;
ENTITY ram IS GENERIC (bits: INTEGER:=8; # of bits per word words: INTEGER := 256); -- # of words in the memory PORT (wr_ena, clk: IN STD_LOGIC; addr: IN INTEGER RANGE 0 to words-1; data_in: IN STD_LOGIC_VECTOR(bits -1 downto 0); data_out: OUT STD_LOGIC_VECTOR(bits - 1 downto 0) ); END ram; ECE 545 – Introduction to VHDL
5
Generic RAM – inferring LUT-based RAM (2)
ARCHITECTURE LUT_based_ram OF ram IS TYPE vector_array IS ARRAY (0 TO words-1) OF STD_LOGIC_VECTOR(bits-1 DOWNTO 0); SIGNAL memory: vector_array; BEGIN PROCESS(clk) IF (rising_edge(clk)) THEN IF(wr_ena=‘1’) THEN memory(addr) <= data_in; END IF; END PROCESS; data_out <= memory(addr); END LUT_based_RAM; ECE 545 – Introduction to VHDL
6
Report from Synthesis (1)
Mapping to part: xc3s50vq100-5 Cell usage: MUXF uses RAM64X1S uses LUT uses RAM/ROM usage summary Single Port Rams (RAM64X1S): 32 Mapping Summary: Total LUTs: 148 (9%) ECE 545 – Introduction to VHDL
7
Report from Implementation (1)
Target Device : xc3s50 Target Package : vq100 Target Speed : -5 Design Summary Logic Utilization: Number of 4 input LUTs: out of 1, % Logic Distribution: Number of occupied Slices: out of % Number of Slices containing only related logic: out of % Number of Slices containing unrelated logic: out of % *See NOTES below for an explanation of the effects of unrelated logic Total Number 4 input LUTs: out of 1, % Number used as logic: Number used for 32x1 RAMs: (Two LUTs used per 32x1 RAM) ECE 545 – Introduction to VHDL
8
CLB Slice SLICE ECE 545 – Introduction to VHDL Carry & Control Logic
COUT YB Look-Up Table Carry & Control Logic Y G4 G3 G2 G1 S D Q O CK EC R F5IN BY SR XB Look-Up Table Carry & Control Logic X S F4 F3 F2 F1 D Q O The configurable logic block (CLB) contains two slices. Each slice contains two 4-input look-up tables (LUT), carry & control logic and two registers. There are two 3-state buffers associated with each CLB, that can be accessed by all the outputs of a CLB. Xilinx is the only major FPGA vendor that provides dedicated resources for on-chip 3-state bussing. This feature can increase the performance and lower the CLB utilization for wide multiplex functions. The Xilinx internal bus can also be extended off chip. CK EC R CIN CLK CE SLICE ECE 545 – Introduction to VHDL
9
Xilinx Multipurpose LUT
The Design Warrior’s Guide to FPGAs Devices, Tools, and Flows. ISBN Copyright © 2004 Mentor Graphics Corp. ( ECE 545 – Introduction to VHDL
10
Distributed RAM = or CLB LUT configurable as Distributed RAM
RAM16X1S O D WE WCLK A0 A1 A2 A3 RAM32X1S A4 RAM16X2S O1 D0 D1 O0 = LUT or RAM16X1D SPO DPRA0 DPO DPRA1 DPRA2 DPRA3 CLB LUT configurable as Distributed RAM A LUT equals 16x1 RAM Implements Single and Dual-Ports Cascade LUTs to increase RAM size Synchronous write Synchronous/Asynchronous read Accompanying flip-flops used for synchronous read When the CLB LUT is configured as memory, it can implement 16x1 synchronous RAM. One LUT can implement 16x1 Single-Port RAM. Two LUTs are used to implement 16x1 dual port RAM. The LUTs can be cascaded for desired memory depth and width. The write operation is synchronous. The read operation is asynchronous and can be made synchronous by using the accompanying flip flops of the CLB LUT. The distributed ram is compact and fast which makes it ideal for small ram based functions. ECE 545 – Introduction to VHDL
11
Generic RAM – inferring Block RAM (2)
ARCHITECTURE LUT_based_ram OF ram IS TYPE vector_array IS ARRAY (0 TO words-1) OF STD_LOGIC_VECTOR(bits-1 DOWNTO 0); SIGNAL memory: vector_array; BEGIN PROCESS(clk) IF (rising_edge(clk)) THEN IF(wr_ena=‘1’) THEN memory(addr) <= data_in; ELSE data_out <= memory(addr); END IF; END PROCESS; END LUT_based_RAM; ECE 545 – Introduction to VHDL
12
Report from Synthesis (2)
Mapping to part: xc3s50pq208-5 Cell usage: GND use RAMB16_S use VCC use RAM/ROM usage summary Block Rams : 1 of 4 (25%) Mapping Summary: Total LUTs: 0 (0%) ECE 545 – Introduction to VHDL
13
Report from Implementation (2)
Target Device : xc3s50 Target Package : pq208 Target Speed : -5 Design Summary Logic Utilization: Logic Distribution: Number of Slices containing only related logic: out of % Number of Slices containing unrelated logic: out of % *See NOTES below for an explanation of the effects of unrelated logic Number of bonded IOBs: out of % Number of Block RAMs: out of % Number of GCLKs: out of % ECE 545 – Introduction to VHDL
14
Single-Port Block RAM ECE 545 – Introduction to VHDL
15
Generic ROM (1) LIBRARY ieee; USE ieee.std_logic_1164.all;
ENTITY rom IS GENERIC (bits: INTEGER:=8; # of bits per word words: INTEGER := 8); # of words in the memory PORT ( addr: IN INTEGER RANGE 0 TO words-1; data: OUT STD_LOGIC_VECTOR(bits – 1 DOWNTO 0) ); END rom; ECE 545 – Introduction to VHDL
16
Generic ROM (2) ARCHITECTURE behavioral OF rom IS
TYPE vector_array IS ARRAY (0 TO words-1) OF STD_LOGIC_VECTOR(bits – 1 DOWNTO 0); CONSTANT memory: vector_array := ("0000_0000", "0000_0010", "0000_0100", "0000_1000", "0001_0000", "0010_0000", "0100_0000", "1000_0000"); BEGIN data <= memory(addr); END rom; ECE 545 – Introduction to VHDL
17
Generic ROM (3) – hexadecimal notation
ARCHITECTURE behavioral OF rom IS TYPE vector_array IS ARRAY (0 TO words-1) OF STD_LOGIC_VECTOR(bits – 1 DOWNTO 0); CONSTANT memory: vector_array := (X"00", X"02", X"04", X"08", X"10", X"20", X"40", X"80"); BEGIN data <= memory(addr); END rom; ECE 545 – Introduction to VHDL
18
FPGA specific memories
ECE 545 – Introduction to VHDL
19
Distributed RAM = or CLB LUT configurable as Distributed RAM
RAM16X1S O D WE WCLK A0 A1 A2 A3 RAM32X1S A4 RAM16X2S O1 D0 D1 O0 = LUT or RAM16X1D SPO DPRA0 DPO DPRA1 DPRA2 DPRA3 CLB LUT configurable as Distributed RAM A LUT equals 16x1 RAM Implements Single and Dual-Ports Cascade LUTs to increase RAM size Synchronous write Synchronous/Asynchronous read Accompanying flip-flops used for synchronous read When the CLB LUT is configured as memory, it can implement 16x1 synchronous RAM. One LUT can implement 16x1 Single-Port RAM. Two LUTs are used to implement 16x1 dual port RAM. The LUTs can be cascaded for desired memory depth and width. The write operation is synchronous. The read operation is asynchronous and can be made synchronous by using the accompanying flip flops of the CLB LUT. The distributed ram is compact and fast which makes it ideal for small ram based functions. ECE 545 – Introduction to VHDL
20
RAM 16x1 (1) library IEEE; use IEEE.STD_LOGIC_1164.all;
library UNISIM; use UNISIM.all; entity RAM_16X1_DISTRIBUTED is port( CLK : in STD_LOGIC; WE : in STD_LOGIC; ADDR : in STD_LOGIC_VECTOR(3 downto 0); DATA_IN : in STD_LOGIC; DATA_OUT : out STD_LOGIC ); end RAM_16X1_DISTRIBUTED; ECE 545 – Introduction to VHDL
21
RAM 16x1 (2) architecture RAM_16X1_DISTRIBUTED_STRUCTURAL of RAM_16X1_DISTRIBUTED is -- part used by the synthesis tool, Synplify Pro, only; ignored during simulation attribute INIT : string; attribute INIT of RAM16X1_S_1: label is "0000"; component ram16x1s generic( INIT : BIT_VECTOR(15 downto 0) := X"0000"); port( O : out std_ulogic; A0 : in std_ulogic; A1 : in std_ulogic; A2 : in std_ulogic; A3 : in std_ulogic; D : in std_ulogic; WCLK : in std_ulogic; WE : in std_ulogic); end component; ECE 545 – Introduction to VHDL
22
RAM 16x1 (3) begin RAM_16X1_S_1: ram16x1s generic map (INIT => X”0000") port map (O => DATA_OUT, A0 => ADDR(0), A1 => ADDR(1), A2 => ADDR(2), A3 => ADDR(3), D => DATA_IN, WCLK => CLK, WE => WE ); end RAM_16X1_DISTRIBUTED_STRUCTURAL; ECE 545 – Introduction to VHDL
23
RAM 16x8 (1) library IEEE; use IEEE.STD_LOGIC_1164.all;
library UNISIM; use UNISIM.all; entity RAM_16X8_DISTRIBUTED is port( CLK : in STD_LOGIC; WE : in STD_LOGIC; ADDR : in STD_LOGIC_VECTOR(3 downto 0); DATA_IN : in STD_LOGIC_VECTOR(7 downto 0); DATA_OUT : out STD_LOGIC_VECTOR(7 downto 0) ); end RAM_16X8_DISTRIBUTED; ECE 545 – Introduction to VHDL
24
RAM 16x8 (2) architecture RAM_16X8_DISTRIBUTED_STRUCTURAL of RAM_16X8_DISTRIBUTED is attribute INIT : string; attribute INIT of RAM16X1_S_1: label is "0000"; component ram16x1s generic( INIT : BIT_VECTOR(15 downto 0) := X"0000"); port( O : out std_ulogic; A0 : in std_ulogic; A1 : in std_ulogic; A2 : in std_ulogic; A3 : in std_ulogic; D : in std_ulogic; WCLK : in std_ulogic; WE : in std_ulogic); end component; ECE 545 – Introduction to VHDL
25
RAM 16x8 (3) begin GENERATE_MEMORY: for I in 0 to 7 generate
RAM_16X1_S_1: ram16x1s generic map (INIT => X"0000") port map (O => DATA_OUT(I), A0 => ADDR(0), A1 => ADDR(1), A2 => ADDR(2), A3 => ADDR(3), D => DATA_IN(I), WCLK => CLK, WE => WE ); end generate; end RAM_16X8_DISTRIBUTED_STRUCTURAL; ECE 545 – Introduction to VHDL
26
ROM 16x1 (1) library IEEE; use IEEE.STD_LOGIC_1164.all;
library UNISIM; use UNISIM.all; entity ROM_16X1_DISTRIBUTED is port( ADDR : in STD_LOGIC_VECTOR(3 downto 0); DATA_OUT : out STD_LOGIC ); end ROM_16X1_DISTRIBUTED; ECE 545 – Introduction to VHDL
27
ROM 16x1 (2) architecture ROM_16X1_DISTRIBUTED_STRUCTURAL of ROM_16X1_DISTRIBUTED is attribute INIT : string; attribute INIT of ROM16X1_S_1: label is "F0C1"; component ram16x1s generic( INIT : BIT_VECTOR(15 downto 0) := X"0000"); port( O : out std_ulogic; A0 : in std_ulogic; A1 : in std_ulogic; A2 : in std_ulogic; A3 : in std_ulogic; D : in std_ulogic; WCLK : in std_ulogic; WE : in std_ulogic); end component; signal Low : std_ulogic := ‘0’; ECE 545 – Introduction to VHDL
28
ROM 16x1 (3) begin ROM_16X1_S_1: ram16x1s
generic map (INIT => X"F0C1") port map (O=>DATA_OUT, A0=>ADDR(0), A1=>ADDR(1), A2=>ADDR(2), A3=>ADDR(3), D=>Low, WCLK=>Low, WE=>Low ); end ROM_16X1_DISTRIBUTED_STRUCTURAL; ECE 545 – Introduction to VHDL
29
std_logic vs. std_ulogic
TYPE std_ulogic IS (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’); SUBTYPE std_logic IS std_ulogic RANGE ‘X’ TO ‘-’; ECE 545 – Introduction to VHDL
30
Conversion std_logic_vector => integer (1)
LIBRARY ieee; USE ieee.std_logic_1164.all; USE ieee.std_logic_arith.all; entity test is end test; architecture behavior of test is SIGNAL stdl_addr: STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL u_addr: UNSIGNED(7 DOWNTO 0); SIGNAL i_addr : INTEGER; begin u_addr <= unsigned(stdl_addr); i_addr <= conv_integer(u_addr); end behavior; ECE 545 – Introduction to VHDL
31
Conversion std_logic_vector => integer (2)
LIBRARY ieee; USE ieee.std_logic_1164.all; USE ieee.std_logic_arith.all; entity test is end test; architecture behavior of test is SIGNAL stdl_addr: STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL i_addr : INTEGER; begin u_addr <= conv_integer(unsigned(stdl_addr)); end behavior; ECE 545 – Introduction to VHDL
32
Instruction ROM example (1)
LIBRARY ieee; USE ieee.std_logic_1164.all; USE ieee.std_logic_arith.all; ENTITY instruction_rom IS GENERIC ( w : INTEGER := 16; n : INTEGER := 8; m : INTEGER := 3); PORT ( Instr_addr : IN STD_LOGIC_VECTOR(m-1 DOWNTO 0); Instr : out STD_LOGIC_VECTOR(w-1 DOWNTO 0) ); END instruction_rom; ECE 545 – Introduction to VHDL
33
Instruction ROM example (2)
ARCHITECTURE ins_rom OF insstruction_rom IS SIGNAL temp: INTEGER RANGE 0 TO 7; TYPE vector_array IS ARRAY (0 to n-1) OF STD_LOGIC_VECTOR(w-1 DOWNTO 0); CONSTANT memory : vector_array := ( "0000_0000_0000_0000", "0000_0000_0000_0000", "1101_0100_0101_1001", "1101_0100_0101_1000", "0110_1000_1000_0111", "0100_1001_1001_1010", "1111_0110_0111_0101", "1111_0110_0111_0100", BEGIN temp <= conv_integer(unsigned(Instr_addr)); Instr <= memory(temp); END instruction_rom; ECE 545 – Introduction to VHDL
34
Generic dual-ported memory (1)
LIBRARY ieee; USE ieee.std_logic_1164.all; USE ieee.std_logic_arith.all; ENTITY memory_local IS PORT( wen : IN STD_LOGIC; clk : IN STD_LOGIC; data_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0); addr1 : IN STD_LOGIC_VECTOR(4 DOWNTO 0); addr2 : IN STD_LOGIC_VECTOR (4 DOWNTO 0); data_out1: OUT STD_LOGIC_VECTOR(31 DOWNTO 0); data_out2: OUT STD_LOGIC_VECTOR(31 DOWNTO 0) ); END memory_local; ECE 545 – Introduction to VHDL
35
Generic dual-ported memory (2)
ARCHITECTURE memory_local OF memory_local IS TYPE vector_array IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR(31 DOWNTO 0); SIGNAL memory : vector_array; SIGNAL temp1: INTEGER RANGE 0 TO 31; SIGNAL temp2: INTEGER RANGE 0 TO 31; BEGIN temp1 <= conv_integer(unsigned(addr1)); temp2 <= conv_integer(unsigned(addr2)); PROCESS(clk) IF (clk = '1' AND clk'event) THEN IF (wen = '1') THEN memory(temp2) <= data_in; END IF; END PROCESS; data_out1 <= memory(temp1); data_out2 <= memory(temp2); END memory_local; ECE 545 – Introduction to VHDL
36
Report from Implementation
Target Device : xc3s50 Target Package : pq208 Target Speed : -5 Design Summary Logic Utilization: Number of 4 input LUTs: out of 1, % Logic Distribution: Number of occupied Slices: out of % Number of Slices containing only related logic: out of % Number of Slices containing unrelated logic: out of % *See NOTES below for an explanation of the effects of unrelated logic Total Number 4 input LUTs: out of 1, % Number used as logic: Number used for Dual Port RAMs: (Two LUTs used per Dual Port RAM) ECE 545 – Introduction to VHDL
37
Distributed RAM = or CLB LUT configurable as Distributed RAM
RAM16X1S O D WE WCLK A0 A1 A2 A3 RAM32X1S A4 RAM16X2S O1 D0 D1 O0 = LUT or RAM16X1D SPO DPRA0 DPO DPRA1 DPRA2 DPRA3 CLB LUT configurable as Distributed RAM A LUT equals 16x1 RAM Implements Single and Dual-Ports Cascade LUTs to increase RAM size Synchronous write Synchronous/Asynchronous read Accompanying flip-flops used for synchronous read When the CLB LUT is configured as memory, it can implement 16x1 synchronous RAM. One LUT can implement 16x1 Single-Port RAM. Two LUTs are used to implement 16x1 dual port RAM. The LUTs can be cascaded for desired memory depth and width. The write operation is synchronous. The read operation is asynchronous and can be made synchronous by using the accompanying flip flops of the CLB LUT. The distributed ram is compact and fast which makes it ideal for small ram based functions. ECE 545 – Introduction to VHDL
38
Constants ECE 545 – Introduction to VHDL
39
Constants Syntax: CONSTANT name : type := value; Examples:
CONSTANT high : STD_LOGIC := ‘1’; CONSTANT datamemory : memory := ((X"00", X"02"); ECE 545 – Introduction to VHDL
40
Constants - features Constants can be declared in a
PACKAGE, ENTITY, ARCHITECTURE When declared in a PACKAGE, the constant is truly global, for the package can be used in several entities. When declared in an ARCHITECTURE, the constant is local, i.e., it is visible only within this architecture. When declared in an ENTITY, the constant can be used in all architectures associated with this entity. ECE 545 – Introduction to VHDL
41
Specifying time in VHDL
ECE 545 – Introduction to VHDL
42
Physical data types Types representing physical quantities, such as time, voltage, capacitance, etc. are referred in VHDL as physical data types. TIME is the only predefined physical data type. Value of the physical data type is called a physical literal. ECE 545 – Introduction to VHDL
43
Time values (physical literals) - Examples
7 ns 1 min min 10.65 us 10.65 fs Numeric value Space Unit of time (dimension) ECE 545 – Introduction to VHDL
44
TIME values Numeric value can be an integer or
a floating point number. Numeric value is optional. If not given, 1 is implied. Numeric value and dimension MUST be separated by a space. ECE 545 – Introduction to VHDL
45
Units of time Unit Definition Base Unit
fs femtoseconds (10-15 seconds) Derived Units ps picoseconds (10-12 seconds) ns nanoseconds (10-9 seconds) us microseconds (10-6 seconds) ms miliseconds (10-3 seconds) sec seconds min minutes (60 seconds) hr hours (3600 seconds) ECE 545 – Introduction to VHDL
46
Values of the type TIME Value of a physical literal is defined in terms of integral multiples of the base unit, e.g. 10.65 us = 10,650,000,000 fs 10.65 fs = 10 fs Smallest available resolution in VHDL is 1 fs. Smallest available resolution in simulation can be set using a simulator command or parameter. ECE 545 – Introduction to VHDL
47
Arithmetic operations on values of the type TIME
Examples: 7 ns + 10 ns = 17 ns 1.2 ns – 12.6 ps = fs 5 ns * 4.3 = 21.5 ns 20 ns / 5ns = 4 ECE 545 – Introduction to VHDL
48
Records ECE 545 – Introduction to VHDL
49
Records – Examples (1) type opcodes is (add, sub, and, or);
type reg_number is range 0 to 8; type instruction is record opcode: opcodes; source_reg1: reg_number; source_reg2: reg_number; dest_reg: reg_number; displacement: integer; end record instruction ECE 545 – Introduction to VHDL
50
Records – Examples (2) type word is record instr: instruction;
data: bit_vector(31 downto 0); end record instruction; constant add_instr_1_3: instruction:= (opcode => add, source_reg1 | dest_reg => 1, source_reg2 => 3, displacement => 0); ECE 545 – Introduction to VHDL
51
Asserts & Reports ECE 545 – Introduction to VHDL
52
Assert Assert is a non-synthesizable statement
whose purpose is to write out messages on the screen when problems are found during simulation. Depending on the severity of the problem, The simulator is instructed to continue simulation or halt. ECE 545 – Introduction to VHDL
53
Assert - syntax ASSERT condition [REPORT "message"
[SEVERITY severity_level ]; The message is written when the condition is FALSE. Severity_level can be: Note, Warning, Error (default), or Failure. ECE 545 – Introduction to VHDL
54
Assert - Examples assert initial_value <= max_value
report "initial value too large" severity error; assert packet_length /= 0 report "empty network packet received" severity warning; assert false report "Initialization complete" severity note; ECE 545 – Introduction to VHDL
55
Report - syntax REPORT "message" [SEVERITY severity_level ];
The message is always written. Severity_level can be: Note (default), Warning, Error, or Failure. ECE 545 – Introduction to VHDL
56
Report - Examples report "Initialization complete";
report "Current time = " & time'image(now); report "Incorrect branch" severity error; ECE 545 – Introduction to VHDL
57
Variables ECE 545 – Introduction to VHDL
58
Variable – Example (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ;
ENTITY Numbits IS PORT ( X : IN STD_LOGIC_VECTOR(1 TO 3) ; Count : OUT INTEGER RANGE 0 TO 3) ; END Numbits ; ECE 545 – Introduction to VHDL
59
Variable – Example (2) ARCHITECTURE Behavior OF Numbits IS BEGIN
PROCESS(X) – count the number of bits in X equal to 1 VARIABLE Tmp: INTEGER; Tmp := 0; FOR i IN 1 TO 3 LOOP IF X(i) = ‘1’ THEN Tmp := Tmp + 1; END IF; END LOOP; Count <= Tmp; END PROCESS; END Behavior ; ECE 545 – Introduction to VHDL
60
Variables - features Can only be declared within processes and subprograms (functions & procedures) Initial value can be explicitly specified in the declaration When assigned take an assigned value immediately Variable assignments represent the desired behavior, not the structure of the circuit Should be avoided, or at least used with caution in a synthesizable code ECE 545 – Introduction to VHDL
61
Advanced Testbenches ECE 545 – Introduction to VHDL
62
Using Arrays of Test Vectors
In Testbenches ECE 545 – Introduction to VHDL
63
Testbench (1) LIBRARY ieee; USE ieee.std_logic_1164.all;
ENTITY sevenSegmentTB is END sevenSegmentTB; ARCHITECTURE testbench OF sevenSegmentTB IS COMPONENTsevenSegment PORT ( bcdInputs : IN STD_LOGIC_VECTOR (3 DOWNTO 0); seven_seg_outputs : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); ); end COMPONENT; CONSTANT PropDelay: time := 40 ns; CONSTANT SimLoopDelay: time := 10 ns; ECE 545 – Introduction to VHDL
64
Testbench (2) TYPE vector IS RECORD
bcdStimulus: STD_LOGIC_VECTOR(3 downto 0); sevSegOut: STD_LOGIC_VECTOR(6 downto 0); END RECORD; CONSTANT NumVectors: INTEGER:= 10; TYPE vectorArray is ARRAY (0 TO NumVectors - 1) OF vector; CONSTANT vectorTable: vectorArray := ( (bcdStimulus => "0000", sevSegOut => " "), (bcdStimulus => "0001", sevSegOut => " "), (bcdStimulus => "0010", sevSegOut => " "), (bcdStimulus => "0011", sevSegOut => " "), (bcdStimulus => "0100", sevSegOut => " "), (bcdStimulus => "0101", sevSegOut => " "), (bcdStimulus => "0110", sevSegOut => " "), (bcdStimulus => "0111", sevSegOut => " "), (bcdStimulus => "1000", sevSegOut => " "), (bcdStimulus => "1001", sevSegOut => " ") ); ECE 545 – Introduction to VHDL
65
Testbench (3) SIGNAL StimInputs: STD_LOGIC_VECTOR(3 downto 0);
SIGNAL CaptureOutputs: STD_LOGIC_VECTOR(6 downto 0); BEGIN u1: sevenSegment PORT MAP ( bcdInputs => StimInputs, seven_seg_outputs => CaptureOutputs); ECE 545 – Introduction to VHDL
66
Testbench (4) LoopStim: PROCESS BEGIN FOR i in 0 TO NumVectors-1 LOOP
StimInputs <= vectorTable(i).bcdStimulus; WAIT FOR PropDelay; ASSERT CaptureOutputs == vectorTable(i).sevSegOut REPORT “Incorrect Output” SEVERITY error; WAIT FOR SimLoopDelay; END LOOP; ECE 545 – Introduction to VHDL
67
Testbench (5) WAIT; END PROCESS; END testbench;
ECE 545 – Introduction to VHDL
68
File I/O ECE 545 – Introduction to VHDL
69
Design Under Test (1) LIBRARY ieee; USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all; ENTITY loadCnt IS PORT ( data: IN STD_LOGIC_VECTOR (7 DOWNTO 0); load: IN STD_LOGIC; clk: IN STD_LOGIC; rst: IN STD_LOGIC; q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0) ); END loadCnt; ECE 545 – Introduction to VHDL
70
Design Under Test (2) ARCHITECTURE rtl OF loadCnt IS
SIGNAL cnt: STD_LOGIC_VECTOR (7 DOWNTO 0); BEGIN counter: PROCESS (clk, rst) IF (rst = '1') THEN cnt <= (OTHERS => '0'); ELSIF (clk'event AND clk = '1') THEN IF (load = '1') THEN cnt <= data; ELSE cnt <= cnt + 1; END IF; END PROCESS; q <= cnt; END rtl; ECE 545 – Introduction to VHDL
71
Test vector file (1) #Format is Rst, Load, Data, Q
#load the counter to all 1s #reset the counter #now perform load/increment for each bit # ECE 545 – Introduction to VHDL
72
Test vector file (2) # #check roll-over case # End vectors ECE 545 – Introduction to VHDL
73
Testbench (1) LIBRARY ieee; USE ieee.std_logic_1164.all;
USE ieee.std_logic_textio.all; LIBRARY std; USE std.textio.all; ENTITY loadCntTB IS END loadCntTB; ECE 545 – Introduction to VHDL
74
Testbench (2) ARCHITECTURE testbench OF loadCntTB IS COMPONENT loadCnt
PORT ( data: IN STD_LOGIC_VECTOR (7 DOWNTO 0); load: IN STD_LOGIC; clk: IN STD_LOGIC; rst: IN STD_LOGIC; q: OUT STD_LOGC_VECTOR (7 DOWNTO 0) ); END COMPONENT; ECE 545 – Introduction to VHDL
75
Testbench (3) FILE vectorFile: TEXT OPEN READ_MODE is "vectorfile.txt"; TYPE vectorType IS RECORD data: STD_LOGIC_VECTOR(7 DOWNTO 0); load: STD_LOGIC; rst: STD_LOGIC; q: STD_LOGIC_VECTOR(7 DOWNTO 0); END RECORD; SIGNAL testVector: vectorType; SIGNAL Qout: STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL TestClk: STD_LOGIC := '0'; CONSTANT ClkPeriod: TIME := 100 ns; ECE 545 – Introduction to VHDL
76
Testbench (4) BEGIN -- Free running test clock
TestClk <= NOT TestClk AFTER ClkPeriod/2; -- Instance of design being tested u1: loadCnt PORT MAP (Data => testVector.Data, load => testVector.Load, clk => TestClk, rst => testVector.Rst, q => Qout ); ECE 545 – Introduction to VHDL
77
Testbench (5) -- File reading and stimulus application
readVec: PROCESS VARIABLE VectorLine: LINE; VARIABLE VectorValid: BOOLEAN; VARIABLE vRst: STD_LOGIC; VARIABLE vLoad: STD_LOGIC; VARIABLE vData: STD_LOGIC_VECTOR(7 DOWNTO 0); VARIABLE vQ: STD_LOGIC_VECTOR(7 DOWNTO 0); VARIABLE space: CHARACTER; ECE 545 – Introduction to VHDL
78
Testbench (5) BEGIN WHILE NOT ENDFILE (vectorFile) LOOP
readline(vectorFile, VectorLine); read(VectorLine, vRst, good => VectorValid); NEXT WHEN NOT VectorValid; read(VectorLine, space); read(VectorLine, vLoad); read(VectorLine, vData); read(VectorLine, vQ); WAIT FOR ClkPeriod/4; ECE 545 – Introduction to VHDL
79
Testbench (6) testVector.Rst <= vRst; testVector.Load <= vLoad;
testVector.Data <= vData; testVector.Q <= vQ; WAIT FOR (ClkPeriod/4) * 3; END LOOP; ASSERT FALSE REPORT "Simulation complete" SEVERITY NOTE; WAIT; END PROCESS; ECE 545 – Introduction to VHDL
80
Testbench (7) -- Process to verify outputs verify: PROCESS (TestClk)
variable ErrorMsg: LINE; BEGIN IF (TestClk'event AND TestClk = '0') THEN IF Qout /= testVector.Q THEN write(ErrorMsg, STRING'("Vector failed ")); write(ErrorMsg, now); writeline(output, ErrorMsg); END IF; END PROCESS; END testbench; ECE 545 – Introduction to VHDL
81
Hex format In order to read/write data in the hexadecimal
notation, replace read with hread, and write with hwrite ECE 545 – Introduction to VHDL
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.