Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 13: Meiosis & Sexual Reproduction

Similar presentations


Presentation on theme: "Chapter 13: Meiosis & Sexual Reproduction"— Presentation transcript:

1 Chapter 13: Meiosis & Sexual Reproduction

2 Cell division / Asexual reproduction
Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes same genetic information What is Binary Fission? Aaaargh! I’m seeing double!

3 + 46 46 92 Okay then….? No! What if we did, then…. Doesn’t work!
Why can’t we just do mitosis to reproduce? Why produce sperm and egg and even go through the hassle of dating? If we are going to do it can we make egg & sperm by mitosis? No! What if we did, then…. 46 + 46 92 egg sperm zygote Doesn’t work!

4 Sexual reproduction creates variability
Sexual reproduction allows us to maintain both genetic similarity & differences. Jonas Brothers Baldwin brothers Martin & Charlie Sheen, Emilio Estevez any 2 parents will produce a zygote with over 70 trillion (223 x 223) possible diploid combinations

5 The value of sexual reproduction
Sexual reproduction introduces genetic variation genetic recombination independent assortment of chromosomes random alignment of homologous chromosomes in Metaphase 1 crossing over mixing of alleles across homologous chromosomes random fertilization which sperm fertilizes which egg? Driving evolution providing variation for natural selection gametes of offspring do not have same combination of genes as gametes from parents random assortment in humans produces 223 (8,388,608) different combinations in gametes metaphase1

6 Human female karyotype
46 chromosomes 23 pairs

7 Human male karyotype 46 chromosomes 23 pairs

8 Homologous chromosomes
Paired chromosomes both chromosomes of a pair carry “matching” genes control same inherited characters homologous = same information single stranded homologous chromosomes diploid 2n 2n = 4 double stranded homologous chromosomes

9 Meiosis: production of gametes
chromosome number must be reduced diploid  haploid 2n  n humans: 46  23 meiosis reduces chromosome number makes gametes fertilization restores chromosome number haploid  diploid n  2n haploid Warning: meiosis evolved from mitosis, so stages & “machinery” are similar but the processes are radically different. Do not confuse the two! diploid

10 Double division of meiosis
DNA replication Meiosis 1 1st division of meiosis separates homologous pairs Meiosis 2 2nd division of meiosis separates sister chromatids

11 Meiosis 1 1st division of meiosis separates homologous pairs synapsis
single stranded Meiosis 1 1st division of meiosis separates homologous pairs 2n = 4 double stranded prophase 1 synapsis 2n = 4 double stranded metaphase 1 tetrad reduction 1n = 2 double stranded telophase 1

12 Trading pieces of DNA Crossing over
during Prophase 1, sister chromatids intertwine homologous pairs swap pieces of chromosome DNA breaks & re-attaches prophase 1 synapsis tetrad

13 What does this division look like?
Meiosis 2 2nd division of meiosis separates sister chromatids 1n = 2 double stranded prophase 2 What does this division look like? 1n = 2 double stranded metaphase 2 1n = 2 single stranded telophase 2 4

14 Steps of meiosis Meiosis 1 Meiosis 2 interphase prophase 1 metaphase 1
anaphase 1 telophase 1 Meiosis 2 prophase 2 metaphase 2 anaphase 2 telophase 2 1st division of meiosis separates homologous pairs (2n  1n) “reduction division” 2nd division of meiosis separates sister chromatids (1n  1n) * just like mitosis *

15 Mitosis vs. Meiosis Mitosis Meiosis 1 division
daughter cells genetically identical to parent cell produces 2 cells 2n  2n produces cells for growth & repair no crossing over Meiosis 2 divisions daughter cells genetically different from parent produces 4 cells 2n  1n produces gametes crossing over

16 Putting it all together…
meiosis  fertilization  mitosis + development gametes 46 23 46 23 46 46 46 46 46 23 meiosis 46 46 egg 46 46 23 zygote fertilization mitosis sperm development

17 Sperm production Spermatogenesis continuous & prolific process
Epididymis Testis germ cell (diploid) Coiled seminiferous tubules primary spermatocyte (diploid) MEIOSIS I secondary spermatocytes (haploid) MEIOSIS II Vas deferens spermatids (haploid) spermatozoa Spermatogenesis continuous & prolific process each ejaculation = million sperm Cross-section of seminiferous tubule

18 Egg production: Oogenesis
Begins in the ovaries of the female fetus before birth Pauses during first meiotic division Final development occurs in the ovaries of the adult female Each month one egg matures as cued by hormones Completes the first meiotic division and starts the second meiotic division Last bit of meiosis is finalized at time of fertilization

19 Putting all your egg in one basket!
Oogenesis MEIOSIS I MEIOSIS II first polar body second polar body ovum (haploid) secondary oocyte primary (diploid) germinal cell primary follicles mature follicle with secondary oocyte ruptured follicle (ovulation) corpus luteum developing follicle fertilization fallopian tube after fertilization

20 Sperm vs. Egg Production
Similarities Both produce haploid cells by meiosis Both take place in the gonads both are controlled by hormones Differences Spermatogenesis produces 4 sperm each time while oogenesis produces only 1 egg Formation of mature sperm continually occurs while eggs only mature once a month (on average) Sperm formation never stops, egg formation ends at menopause Sperm can be released at anytime while eggs are released only once a month

21 Differences across kingdoms
Not all organisms use haploid & diploid stages in same way which one is dominant (2n or n) differs but still alternate between haploid & diploid must for sexual reproduction

22

23


Download ppt "Chapter 13: Meiosis & Sexual Reproduction"

Similar presentations


Ads by Google