Download presentation
Presentation is loading. Please wait.
Published byΛεφτέρις Παπαδάκης Modified over 5 years ago
1
Towards a Fully Digital State-of-the-art Analog SiPM
Andrada Muntean1, Esteban Venialgo1, Salvatore Gnecchi2, Carl Jackson2, Edoardo Charbon3 1Delft University of Technology, Delft, The Netherlands, 2SensL, Cork, Ireland 3EPFL, Lausanne, Switzerland
2
Outline Goal and Objectives Architecture Results Conclusions
3
Silicon Photomultipliers
Analog SiPM Digital SiPM
4
Why SiPM? Compact Low bias voltage Insensitive to magnetic fields
Noise characteristics improved through manufacturing processes Low cost Low power consumption Good timing resolution
5
SiPMs (2) Analog SiPM with FAST output Ĩ = ĩ1 +ĩ2 +ĩ3 +ĩ4 + … + ĩn
v1 + C FAST OUTPUT STANDARD OUTPUT
6
Fast Output SensL Source: SensL
7
TDC Goal of this work Analog SiPM with digital output
FAST OUTPUT TDC DIGITAL OUTPUT STANDARD OUTPUT Analog SiPM with digital output Backward-compatible
8
Objectives Reduction of internal parasitics Digital output
Versatility / simplicity Compactness
9
Architecture FAST STANDARD OUTPUT Ring Oscillator MSB START Vref LSB
STOP
10
Multi-Path ring oscillator
Source: A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping (Matthew Z. Straayer, Michael H. Perrott)
11
TDC – doubling RO frequency
Counter Tri-state delay cells Small area No calibration
12
Tri-state three inputs inverter
Quicker transition for each input Faster oscillation period Minimum dimensions Symmetric inverter
13
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
14
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
15
TDC – phase recycling Count=1 D-FF Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP 8 7
Φ0 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 STOP D-FF 1 8 7 6 5 4 3 2 Count=1
16
Advantages & Drawbacks
Simplicity Fast oscillation period with only 9 delay stages Good LSB Smaller area compared to other TDC architectures Complex layout (symmetric delay lines)
17
TDC layout TDC area: 73.67µm x 363.35µm -> 26767µm2 COUNTER VCO
SERIALIZER TDC area: 73.67µm x µm -> 26767µm2
18
Results – TDC performance (no anti-phase)
TT LSB =64.49ps FS LSB = 67.95ps SF LSB = 69.39ps FF LSB = 45.71ps SS LSB = 91.79ps Performance Value LSB 64.49 ps (TT) DNL +/ LSB (TT) INL +/- 1.0 LSB (TT) Worst-case DNL +1.28/-1 LSB Worst-case INL +2.12/-1.66 LSB
19
Results – PVT sensitivity
LSB vs. Temperature LSB vs. Vdd RING
20
System performance summary
Value SiPM 420nm 51 % FF 75 % DCR 50 kcps/mm2 TDC LSB (std/anti-phase) 64.5/35 ps DNL/INL (TT) +/ /-1.0 LSB Resolution 10 bits Supply 3.3 V Input Single-ended Readout clock 40 MHz Power (peak / standby) <9mW / <1mW System Area 3 x 3.3 mm2 Backward-compatible yes 3 mm
21
Conclusions Expected improvement of parasitics in a fully integrated solution Backward-compatibility guaranteed Simplicity and compactness
22
Current and future work
Develop new TDC architectures Low complexity, robust, scalable, versatile Increase timestamping granularity (more/faster TDCs) 3D ICs will enable the combination of SiPM optimized technologies with advanced CMOS low-power processes
23
Acknowledgements The Swiss National Science Foundation
SensL for funding, in part, this research and for providing technology support
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.