Presentation is loading. Please wait.

Presentation is loading. Please wait.

Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004.

Similar presentations


Presentation on theme: "Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004."— Presentation transcript:

1 Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004

2 Harmonic Vibrations of N-Body Systems
Separation of overall (center-of-mass “com”), rot and vib motion: z x Superposition of Nvib independent vibrational “normal modes”, normal coordinates {qj} 3 Normal modes of linear molecules symmetric stretch (infrared) No interaction with other degrees of freedom i≠j asymmetric stretch Harmonic Oscillator Generic example: Diatomic molecule (H-Cl),.. Discrete bound (stationary) states at low excitations Dissociation at high excitations bend (2 x) Classical vibrational frequency cj= Hooke’s constant Dissociation W. Udo Schröder, 2004

3 Morse Potential and Harmonic Approximation
Equilibrium bond length Taylor expansion about Dissociation Harmonic Oscillator W. Udo Schröder, 2004

4 Stationary Schrödinger Equation
Harmonic Oscillator Reset energy scale  U(q0)=0 x := displacement from equilibrium m:= reduced mass Stationary Schrödinger Equation x= D Symmetric potential  Harmonic Oscillator Energy eigen states y(x) : spatially either symmetric or asymmetric W. Udo Schröder, 2004

5 Harmonic Oscillator: Asymptotic Behavior
Asymptotic boundary conditions (y(x) in classically forbidden region)? x2 k2/l  k2« l2x2 Harmonic Oscillator solved app. by Gaussian decay of wf in forbidden region, faster for heavy particles (m) and steep potential (c) . For HCL: l ~ 84 Å-2 W. Udo Schröder, 2004

6 Harmonic Oscillator Eigen Value Equation
Trial: =exact solution for Harmonic Oscillator Found one energy eigen value and eigen function (= ground state of qu. oscillator) W. Udo Schröder, 2004

7 Harmonic Oscillator: Hermite’s Differential Equ.
All asymptotic: Trial function Harmonic Oscillator Hermite’s DEqu. Asymptotic behavior: H(x) not exponential  H = finite power series W. Udo Schröder, 2004

8 Solving with Series Method
Hermite’s DEqu. Asymptotic behavior  H(x) not exponential  H= finite power series Discrete EV spectrum, count states n=,0, 1,… ai from differential equ. Harmonic Oscillator all =0 W. Udo Schröder, 2004

9 Energy Spectrum of Harmonic Oscillator
Recursion relations for ai terminate at i = n i = even or i = odd. Harmonic Oscillator w Energy eigen values of qu. harmonic oscillator W. Udo Schröder, 2004

10 Harmonic Oscillator Level Scheme
Equidistant level scheme x= D E0 E1 E2 E3 n=0 n=1 n=2 n=3 unbounded, n   HCl Zero-point energy +1: absorption -1: emission Elm. E1 transitions: D n = ± 1 D Harmonic Oscillator Absorption and emission in infra-red spectral region W. Udo Schröder, 2004

11 Rot-Vib Spectra of Molecules
Assume independent rot and vib  neglect centrifugal stretching L r m1 z f m2 q Very different energy scales Selection rules for elm transitions: J=0 J=1 J=2 J=3 J=4 n = 2 J=0 J=1 J=2 J=3 J=4 n = 1 Harmonic Oscillator J=0 J=1 J=2 J=3 J=4 n = 0 rotational band vibrational band Vibrational transition change in   change in angular momentum W. Udo Schröder, 2004

12 Rot-Vib Spectra of Molecules
Assume independent rot and vib neglect centrifugal stretching L r m1 z f m2 q J2 J1 Rot-vib absorption/emission branches Harmonic Oscillator W. Udo Schröder, 2004

13 HOsc-Wave Functions: Hermite’s Polynomials
Definite parity p=+1 , p=-1 Harmonic Oscillator W. Udo Schröder, 2004

14 Oscillator Eigenfunctions
Unnormalized: n=4 n=3 n=2 n=1 Normalization n=0 x Harmonic Oscillator All have definite parity, spatial symmetry. n = # of nodes W. Udo Schröder, 2004

15 Calculating Expectation Values
Mean square deviation from equilibrium bond length HCl MathCad rendition: Deviation from equilibrium bond length Harmonic Oscillator W. Udo Schröder, 2004

16 End of Section Harmonic Oscillator W. Udo Schröder, 2004

17 Harmonic Oscillator: General Solution
W. Udo Schröder, 2004

18 Drawing Elements L r z f q z a L=4 a L r R z f L r R z f q L r R z f z
+1 +2 +3 +4 m -1 -2 -3 -4 a L r R m1 z f m2 L r R m1 z f m2 q L r R m1 z f m2 z x y L r R f m z Harmonic Oscillator W. Udo Schröder, 2004


Download ppt "Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004."

Similar presentations


Ads by Google