Download presentation
Presentation is loading. Please wait.
Published byWilfrid Blake Modified over 5 years ago
1
Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004
2
Harmonic Vibrations of N-Body Systems
Separation of overall (center-of-mass “com”), rot and vib motion: z x Superposition of Nvib independent vibrational “normal modes”, normal coordinates {qj} 3 Normal modes of linear molecules symmetric stretch (infrared) No interaction with other degrees of freedom i≠j asymmetric stretch Harmonic Oscillator Generic example: Diatomic molecule (H-Cl),.. Discrete bound (stationary) states at low excitations Dissociation at high excitations bend (2 x) Classical vibrational frequency cj= Hooke’s constant Dissociation W. Udo Schröder, 2004
3
Morse Potential and Harmonic Approximation
Equilibrium bond length Taylor expansion about Dissociation Harmonic Oscillator W. Udo Schröder, 2004
4
Stationary Schrödinger Equation
Harmonic Oscillator Reset energy scale U(q0)=0 x := displacement from equilibrium m:= reduced mass Stationary Schrödinger Equation x= D Symmetric potential Harmonic Oscillator Energy eigen states y(x) : spatially either symmetric or asymmetric W. Udo Schröder, 2004
5
Harmonic Oscillator: Asymptotic Behavior
Asymptotic boundary conditions (y(x) in classically forbidden region)? x2 k2/l k2« l2x2 Harmonic Oscillator solved app. by Gaussian decay of wf in forbidden region, faster for heavy particles (m) and steep potential (c) . For HCL: l ~ 84 Å-2 W. Udo Schröder, 2004
6
Harmonic Oscillator Eigen Value Equation
Trial: =exact solution for Harmonic Oscillator Found one energy eigen value and eigen function (= ground state of qu. oscillator) W. Udo Schröder, 2004
7
Harmonic Oscillator: Hermite’s Differential Equ.
All asymptotic: Trial function Harmonic Oscillator Hermite’s DEqu. Asymptotic behavior: H(x) not exponential H = finite power series W. Udo Schröder, 2004
8
Solving with Series Method
Hermite’s DEqu. Asymptotic behavior H(x) not exponential H= finite power series Discrete EV spectrum, count states n=,0, 1,… ai from differential equ. Harmonic Oscillator all =0 W. Udo Schröder, 2004
9
Energy Spectrum of Harmonic Oscillator
Recursion relations for ai terminate at i = n i = even or i = odd. Harmonic Oscillator w Energy eigen values of qu. harmonic oscillator W. Udo Schröder, 2004
10
Harmonic Oscillator Level Scheme
Equidistant level scheme x= D E0 E1 E2 E3 n=0 n=1 n=2 n=3 unbounded, n HCl Zero-point energy +1: absorption -1: emission Elm. E1 transitions: D n = ± 1 D Harmonic Oscillator Absorption and emission in infra-red spectral region W. Udo Schröder, 2004
11
Rot-Vib Spectra of Molecules
Assume independent rot and vib neglect centrifugal stretching L r m1 z f m2 q Very different energy scales Selection rules for elm transitions: J=0 J=1 J=2 J=3 J=4 n = 2 J=0 J=1 J=2 J=3 J=4 n = 1 Harmonic Oscillator J=0 J=1 J=2 J=3 J=4 n = 0 rotational band vibrational band Vibrational transition change in change in angular momentum W. Udo Schröder, 2004
12
Rot-Vib Spectra of Molecules
Assume independent rot and vib neglect centrifugal stretching L r m1 z f m2 q J2 J1 Rot-vib absorption/emission branches Harmonic Oscillator W. Udo Schröder, 2004
13
HOsc-Wave Functions: Hermite’s Polynomials
Definite parity p=+1 , p=-1 Harmonic Oscillator W. Udo Schröder, 2004
14
Oscillator Eigenfunctions
Unnormalized: n=4 n=3 n=2 n=1 Normalization n=0 x Harmonic Oscillator All have definite parity, spatial symmetry. n = # of nodes W. Udo Schröder, 2004
15
Calculating Expectation Values
Mean square deviation from equilibrium bond length HCl MathCad rendition: Deviation from equilibrium bond length Harmonic Oscillator W. Udo Schröder, 2004
16
End of Section Harmonic Oscillator W. Udo Schröder, 2004
17
Harmonic Oscillator: General Solution
W. Udo Schröder, 2004
18
Drawing Elements L r z f q z a L=4 a L r R z f L r R z f q L r R z f z
+1 +2 +3 +4 m -1 -2 -3 -4 a L r R m1 z f m2 L r R m1 z f m2 q L r R m1 z f m2 z x y L r R f m z Harmonic Oscillator W. Udo Schröder, 2004
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.