Presentation is loading. Please wait.

Presentation is loading. Please wait.

Type Similarity Measure and Its Application to Entity Recommendation

Similar presentations


Presentation on theme: "Type Similarity Measure and Its Application to Entity Recommendation"— Presentation transcript:

1 Type Similarity Measure and Its Application to Entity Recommendation
Zheng Liang

2 Scenario 80个类型 Scientist English Physicists English Mathematicians Christian Mystics . . . Type Jewish American Scientists Deists Nobel Laureates In Physics Scientist . . . 105个类型 Italian Physicists Italian Astrologers Italian Astronomers Scientist . . . 51 个类型 Deists:自然神论者 Christian Mystics:基督教神秘主义 Italian Astrologers Christian Astrologers Italian Astronomers 意大利占星家 基督教占星家 意大利天文学家 When viewing a entity, our goal is to recommend the most similar entities based on type similarity.

3 Type Similarity Measure
0 s(txi, tyj ) 1 i wxi =1 j wyj =1 1  i  m 1  j  n tx1 txi txm . ty1 tyj tyn X Y wx1 wxi wxm wy1 wyj wyn s(txi, tyj ) S(Albert_Einstein, Isaac_Newton)= SetSim(X , Y) wxi is the weight of txi 直观解释:即为 txi在类型集合X中的重要度 0  wxi  1

4 Type Similarity Measure Based on Network Flow
vx1 vxi vxm vs vt . vy1 vyj vyn X Y Cost (1, b(vx1 , vy1 ) ) Capacity (wy1, 0) (wx1, 0) (wxi, 0) (1, b(vxi , vyj ) ) (wyi, 0) Vs:人工源 Vt:人工汇 (wxm, 0) (1, b (vxm , vyn ) ) (wyn, 0) b (vxi , vyj ) = [bij]=1-s(txi, tyj ) 1  i  m ; 1  j  n ; 0  bij  1

5 Problem is formalized as follows:
We turn to the problem of finding a maximum flow of minimum cost. (Edmonds, 1972) Given a network N={V, A, C, B} (V= X  Y  {vs , vt }) Let the cost of a flow f be  (vxi , vyj )A bij fij and let its value be f(vs , vt). We find a flow which is maximum, but has the lowest cost among the maximums. 

6 b( f ) =  (vxi , vyj )A bij fij
=  (1- sij ) fij =  fij -  sij fij (最大流,  fij 1) 1-  sij fij 对于两个相同的集合, b( f ) =0 对于两个完全不相同的集合, b( f ) =1 ( sij=0) b( f )越小, sij fij 越大,表示两个集合相似度越高; 反之,… 0  b( f )  1

7 Type Weight Measure 1: Informational content (Resnik 1992, 1995).
IC(ti )= - logP(ti )=- log(freq(ti )/N) 一元模型,实质就是IDF wxi =IC(txi ) /  IC(txi ) txi  X 0  wxi  1

8 Type Weight Measure 2: Conditional Entropy 多元模型,考虑上下文
H(txi|Txi) = -  P(X) log P(txi |Txi) X={ tx1, tx2,…, txm}; txi  X; Txi =X – { txi }; wxi =H(txi|Txi) /  H(txi|Txi) ( 0  wxi  1 )


Download ppt "Type Similarity Measure and Its Application to Entity Recommendation"

Similar presentations


Ads by Google