Download presentation
Presentation is loading. Please wait.
1
Linear regression
2
How to analyse data?
3
How to analyse data? Plot!
4
Human brain is one the most powerfull computationall tools
How to analyse data? Plot! Human brain is one the most powerfull computationall tools Works differently than a computer…
5
Simple example – finding maximum y(xmax)
Computer 3 2 1 x1 x2 x3
6
Simple example – finding maximum y(xmax)
Computer Set y(xmax) = y(x1). 3 2 1 x1 x2 x3
7
Simple example – finding maximum y(xmax)
Computer Set y(xmax) = y(x1). Go to the next point x2: 3 2 1 x1 x2 x3
8
Simple example – finding maximum y(xmax)
Computer Set y(xmax) = y(x1). Go to the next point x2: If y(x2) > y(xmax) then xmax = x2 2. Else do nothing. 3 2 1 x1 x2 x3
9
Simple example – finding maximum y(xmax)
Computer Set y(xmax) = y(x1). Go to the next point x2: If y(x2) > y(xmax) then xmax = x2 2. Else do nothing. 3. Repeat this procedure until you reach the end. 3 2 1 x1 x2 x3
10
Simple example – finding maximum y(xmax)
Human brain 3 2 1 x1 x2 x3
11
Simple example – finding maximum y(xmax)
Here! Human brain 3 2 1 x1 x2 x3
12
Simple example – finding maximum y(xmax)
Here! Human brain 3 With increasing number of points quicker answer 2 1 x1 x2 x3
13
How to analyse data? Plot x against y
Observe trend - correlation
14
How to „measure” linearity?
Geometry 𝐚 𝒃
15
How to measure angle between two vectors?
Scalar product 𝐚 𝜶 𝒃
16
How to measure angle between two vectors?
Scalar product 𝒂 =( 𝒂 𝟏 , 𝒂 𝟐 ), 𝒃 =( 𝒃 𝟏 , 𝒃 𝟐 ) 𝐚 𝜶 𝒃
17
How to measure angle between two vectors?
Scalar product 𝒂 =( 𝒂 𝟏 , 𝒂 𝟐 ), 𝒃 =( 𝒃 𝟏 , 𝒃 𝟐 ) 𝐚 𝒂 𝒐 𝒃 = 𝒂 𝟏 𝒃 𝟏 + 𝒂 𝟐 𝒃 𝟐 = 𝒊=𝟏 𝟐 𝒂 𝒊 𝒃 𝒊 𝜶 𝒃
18
How to measure angle between two vectors?
Scalar product 𝒂 =( 𝒂 𝟏 , 𝒂 𝟐 ), 𝒃 =( 𝒃 𝟏 , 𝒃 𝟐 ) 𝐚 𝒂 𝒐 𝒃 = 𝒂 𝟏 𝒃 𝟏 + 𝒂 𝟐 𝒃 𝟐 𝜶 𝒂 𝒐 𝒂 = 𝒂 𝟏 𝟐 + 𝒂 𝟐 𝟐 𝒃
19
How to measure angle between two vectors?
Scalar product 𝒂 =( 𝒂 𝟏 , 𝒂 𝟐 ), 𝒃 =( 𝒃 𝟏 , 𝒃 𝟐 ) 𝐚 𝒂 𝒐 𝒃 = 𝒂 𝟏 𝒃 𝟏 + 𝒂 𝟐 𝒃 𝟐 𝜶 𝒂 𝒐 𝒂 = 𝒂 𝟏 𝟐 + 𝒂 𝟐 𝟐 𝒃 𝒄𝒐𝒔 𝜶 = 𝒂 𝒐 𝒃 𝒂 𝒃
20
Example 𝒛 𝒙 𝒚
21
Example How to do it? 𝒛 𝒙 𝒚
22
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
23
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
𝒂 =(𝟏,𝟎,𝟏), 𝒃 =(𝟎,𝟏,𝟏) 𝐚 𝒃 𝒙 𝒚
24
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
𝒂 =(𝟏,𝟎,𝟏), 𝒃 =(𝟎,𝟏,𝟏) 𝐚 𝒄𝒐𝒔 𝜶 = 𝒂 𝒐 𝒃 𝒂 𝒃 𝒃 𝒙 𝒚 𝜶=𝟔 𝟎 𝒐
25
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
𝒂 =(𝟏,𝟎,𝟏), 𝒃 =(𝟎,𝟏,𝟏) 𝐚 𝒄𝒐𝒔 𝜶 = 𝒂 𝒐 𝒃 𝒂 𝒃 𝒃 𝒙 𝒄𝒐𝒔 𝜶 = 𝟏,𝟎,𝟏 𝒐 𝟎,𝟏,𝟏 (𝟏,𝟎,𝟏) 𝟎,𝟏,𝟏 𝒚
26
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
𝒂 =(𝟏,𝟎,𝟏), 𝒃 =(𝟎,𝟏,𝟏) 𝐚 𝒄𝒐𝒔 𝜶 = 𝒂 𝒐 𝒃 𝒂 𝒃 𝒃 𝒙 𝒄𝒐𝒔 𝜶 = 𝟏,𝟎,𝟏 𝒐 𝟎,𝟏,𝟏 (𝟏,𝟎,𝟏) 𝟎,𝟏,𝟏 = 𝟏∗𝟎+𝟎∗𝟏+𝟏∗𝟏 𝟐 𝟐 = 𝟏 𝟐 𝒚
27
Example How to do it? We choose two vectors 𝒛 𝐚 𝒃 𝒙 𝒚
𝒂 =(𝟏,𝟎,𝟏), 𝒃 =(𝟎,𝟏,𝟏) 𝐚 𝒄𝒐𝒔 𝜶 = 𝒂 𝒐 𝒃 𝒂 𝒃 𝒃 𝒙 𝒄𝒐𝒔 𝜶 = 𝟏,𝟎,𝟏 𝒐 𝟎,𝟏,𝟏 (𝟏,𝟎,𝟏) 𝟎,𝟏,𝟏 = 𝟏∗𝟎+𝟎∗𝟏+𝟏∗𝟏 𝟐 𝟐 = 𝟏 𝟐 𝒚 𝜶=𝟔 𝟎 𝒐
28
What’s the relevance? Two sets of data Data are vectors!
X Y y4 y3 y2 𝒙 =(𝟏, 𝟐, 𝟑, 𝟒) 𝒚 =(𝟐, 𝟒.𝟏, 𝟓.𝟒, 𝟖.𝟑) y1 Data are vectors! x1 x2 x3 x4
29
What’s the relevance? Two sets of data Linear relationship parallel 𝒚
X Y y4 𝒚 =𝒂∗ 𝒙 y3 Linear relationship y2 y1 𝒚 parallel x1 x2 x3 x4 𝒙
30
How to measure parallelism between two vectors?
Linear relationship 𝒚 y4 𝒙 parallel = zero angle y3 y2 y1 𝜶≈𝟎→𝒄𝒐𝒔 𝜶 ≈𝟏 x1 x2 x3 x4
31
How to calculute the angle? Scalar product!
Two sets of data X Y y4 y3 cos 𝜶 = 𝒙 𝒐 𝒚 𝒙| 𝒚 | = 𝒊=𝟏 𝒏 𝒙 𝒊 𝒚 𝒊 𝒊=𝟏 𝒏 𝒙 𝒊 𝟐 𝒊=𝟏 𝒏 𝒚 𝒊 𝟐 y2 y1 x1 x2 x3 x4
32
How to calculute the angle? Scalar product!
Changing origin (0,0) 𝒙 , 𝒚 𝑹 𝟐 =cos 𝜶 = 𝒊=𝟏 𝒏 (𝒙 𝒊 − 𝒙 ) (𝒚 𝒊 − 𝒚 ) 𝒊=𝟏 𝒏 (𝒙 𝒊 − 𝒙 ) 𝟐 𝒊=𝟏 𝒏 𝒚 𝒊 − 𝒚 𝟐 𝑦 𝒙 = 𝟏 𝒏 𝒊=𝟏 𝒏 𝒙 𝒊 , 𝒚 = 𝟏 𝒏 𝒊=𝟏 𝒏 𝒚 𝒊 𝑥
33
Our case Two sets of data 𝑹 𝟐 = 𝟏𝟎.𝟏 𝟓 𝟐𝟎.𝟖𝟓 =𝟎.𝟗𝟖 X 1 2 3 4
Y y4 y3 𝑥 = =2.5 𝑦 = =4.95 𝑥− 𝑥 y2 𝑦− 𝑦 𝒊=𝟏 𝒏 (𝒙 𝒊 − 𝒙 ) (𝒚 𝒊 − 𝒚 )=(−𝟏.𝟓∗−𝟐.𝟗𝟓)+(−𝟎.𝟓∗−𝟎.𝟖𝟓)+(𝟎.𝟓∗𝟎.𝟒𝟓)+(𝟏.𝟓∗𝟑.𝟑𝟓)=𝟏𝟎.𝟏 y1 x1 x2 x3 x4 ( 𝒊=𝟏 𝒏 (𝒙 𝒊 − 𝒙 ) 𝟐 =𝟓 𝒊=𝟏 𝒏 𝒚 𝒊 − 𝒚 𝟐 =𝟐𝟎.𝟖𝟓 𝑹 𝟐 = 𝟏𝟎.𝟏 𝟓 𝟐𝟎.𝟖𝟓 =𝟎.𝟗𝟖
34
What is the best position of the line?
The best = smallest error X Y Error = data value – estimated value
35
What is the best position of the line?
The best = smallest error X Y 𝑆𝑆𝐸= 𝑖=1 𝑛 𝐸 𝑖 2 = 𝑖=1 𝑛 𝑦 𝑖 −𝑓 𝑥 𝑖 2 𝑦 2 𝐸 1 = 𝑦 1 −𝑓( 𝑥 1 ) 𝐸 2 𝑓 𝑥 2 𝑓 𝑥 1 𝐸 2 = 𝑦 2 −𝑓 𝑥 2 𝐸 1 𝑓 𝑥 =𝑎𝑥+𝑏 𝑦 1 𝑆𝑆𝐸= 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 𝐸 𝑖 = 𝑦 𝑖 −𝑓 𝑥 𝑖
36
How to adjust a and b so SSE is the smallest?
𝑆𝑆𝐸(𝑎,𝑏)= 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 How to calculate minimum of the SSE(a,b) function? 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑎 =0 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑏 =0
37
How to adjust a and b so SSE is the smallest?
𝑆𝑆𝐸(𝑎,𝑏)= 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑎 = 𝜕 𝜕𝑎 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 = 𝑖=1 𝑛 𝜕 𝜕𝑎 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 = 𝑖=1 𝑛 − 𝑥 𝑖 ∗2 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =−2 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑏 = 𝜕 𝜕𝑏 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 = 𝑖=1 𝑛 𝜕 𝜕𝑏 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 = 𝑖=1 𝑛 −2 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =−2 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏
38
How to adjust a and b so SSE is the smallest?
𝑆𝑆𝐸(𝑎,𝑏)= 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 2 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑎 =0 →−2 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =0 𝜕𝑆𝑆𝐸 𝑎,𝑏 𝜕𝑏 =0→−2 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =0
39
We obtain a set of linear equations of two variables a and b
𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =0 𝑖=1 𝑛 (𝑥 𝑖 𝑦 𝑖 −𝑎 𝑥 𝑖 2 −𝑏 𝑥 𝑖 )=0 𝑎 𝑖=1 𝑛 𝑥 𝑖 2 +𝑏 𝑖=1 𝑛 𝑥 𝑖 − 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 =0 𝑖=1 𝑛 𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏 =0 𝑖=1 𝑛 (𝑦 𝑖 −𝑎 𝑥 𝑖 −𝑏)=0 𝑎 𝑖=1 𝑛 𝑥 𝑖 +𝑏 𝑖=1 𝑛 1− 𝑖=1 𝑛 𝑦 𝑖 =0
40
Finally… Set of linear equations
𝑎 𝑖=1 𝑛 𝑥 𝑖 2 +𝑏 𝑖=1 𝑛 𝑥 𝑖 − 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 =0 𝑎 𝑖=1 𝑛 𝑥 𝑖 2 +𝑏 𝑖=1 𝑛 𝑥 𝑖 = 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 𝑎 𝑖=1 𝑛 𝑥 𝑖 +𝑏 𝑖=1 𝑛 1− 𝑖=1 𝑛 𝑦 𝑖 =0 𝑎 𝑖=1 𝑛 𝑥 𝑖 +𝑏𝑛= 𝑖=1 𝑛 𝑦 𝑖 𝑖=1 𝑛 𝑥 𝑖 2 𝑖=1 𝑛 𝑥 𝑖 𝑖=1 𝑛 𝑥 𝑖 𝑛 𝑎 𝑏 = 𝑖=1 𝑛 𝑥 𝑖 𝑦 𝑖 𝑖=1 𝑛 𝑦 𝑖
41
How to solve it? Set of linear equations.
𝒊=𝟏 𝒏 𝒙 𝒊 𝟐 𝒊=𝟏 𝒏 𝒙 𝒊 𝒊=𝟏 𝒏 𝒙 𝒊 𝒏 𝒂 𝒃 = 𝒊=𝟏 𝒏 𝒙 𝒊 𝒚 𝒊 𝒊=𝟏 𝒏 𝒚 𝒊 𝑨𝒙=𝒃
42
Has solution if 𝒅𝒆𝒕 𝑨 ≠𝟎 𝒙 𝟐 − 𝒙 𝟐 ≠𝟎 𝒙 𝟐 𝒙 𝑪𝒐𝒗 𝑿,𝑿 ≠𝟎
𝒊=𝟏 𝒏 𝒙 𝒊 𝟐 𝒊=𝟏 𝒏 𝒙 𝒊 𝒊=𝟏 𝒏 𝒙 𝒊 𝒏 =𝒏 𝒊=𝟏 𝒏 𝒙 𝒊 𝟐 − 𝒊=𝟏 𝒏 𝒙 𝒊 𝒊=𝟏 𝒏 𝒙 𝒊 ≠𝟎 𝟏 𝒏 𝒊=𝟏 𝒏 𝒙 𝒊 𝟐 − 𝟏 𝒏 𝒊=𝟏 𝒏 𝒙 𝒊 𝟏 𝒏 𝒊=𝟏 𝒏 𝒙 𝒊 ≠𝟎 𝒙 𝟐 𝒙 𝒙 𝟐 − 𝒙 𝟐 ≠𝟎 𝑪𝒐𝒗 𝑿,𝑿 ≠𝟎
43
Linear regression procedure
Plot data – make observation, decide which model fits best. If you decide to use linear regression – compute 𝑹 𝟐 . Solve linear regression problem.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.