Download presentation
Presentation is loading. Please wait.
1
Find: STAC B C O A IAB 19+00 19+50 20+00 20+50 R STAA=15+50.00 IAB=60
Find the stationing at point C. [pause] In this problem, --- o IAB=60 R=1,000 [ft] O=200 [ft]
2
Find: STAC B C O A IAB 19+00 19+50 20+00 20+50 R STAA=15+50.00 IAB=60
a horizontal curve has an interior angle of 60 degrees and a radius of 1,000 feet. o IAB=60 R=1,000 [ft] O=200 [ft]
3
Find: STAC B C O A IAB 19+00 19+50 20+00 20+50 R STAA=15+50.00 IAB=60
Line C is parallel to Line B, and offset by 200 feet. o IAB=60 R=1,000 [ft] O=200 [ft]
4
Find: STAC B C O A IAB 19+00 19+50 20+00 20+50 R STAA=15+50.00 IAB=60
The stationing at Point A is given as [pause] The stationing at Point C can be determined by --- o IAB=60 R=1,000 [ft] O=200 [ft]
5
Find: STAC B C O STAC = STAA + LAC A IAB R STAA=15+50.00 IAB=60
adding Station A to the length of Arc AC. o IAB=60 R=1,000 [ft] O=200 [ft]
6
Find: STAC B C O STAC = STAA + LAC A IAB R STAA=15+50.00 IAB=60
Where Station A is given, and the length of Arc AC --- o IAB=60 R=1,000 [ft] O=200 [ft]
7
Find: STAC B C O STAC = STAA + LAC A IAB R LAC = R * IAC STAA=15+50.00
can be determined from the interior angle AC and the radius. o IAB=60 R=1,000 [ft] O=200 [ft]
8
Find: STAC B C O STAC = STAA + LAC A IAB R LAC = R * IAC STAA=15+50.00
From the problem statement, the radius of the horizontal curve is 1,000 feet, --- o IAB=60 R=1,000 [ft] O=200 [ft]
9
Find: STAC B C O STAC = STAA + LAC A IAB R LAC = R * IAC STAA=15+50.00
and interior angle AC can be determined using geometry. [pause] First we’ll divide --- determine o IAB=60 R=1,000 [ft] using geometry O=200 [ft]
10
Find: STAC B C O ICB IAC STAC = STAA + LAC A IAB R LAC = R * IAC
Angle AB into Angles AC and CB. That way, Angle AC equals --- determine o IAB=60 R=1,000 [ft] using geometry O=200 [ft]
11
Find: STAC B C O ICB IAC STAC = STAA + LAC A IAB R LAC = R * IAC
Angle AB minus Angle CB. The problem states Angle AB equals --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft]
12
Find: STAC B C O ICB IAC STAC = STAA + LAC A IAB R LAC = R * IAC
60 degrees. [pause] Next, we identify the center of the horizontal curve as --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft]
13
Find: STAC B C O IAC STAC = STAA + LAC A R P LAC = R * IAC
Point P, and the intersection of Line BP --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft]
14
Find: STAC B C O B’ IAC STAC = STAA + LAC A R P LAC = R * IAC
with Line C as Point B prime, then Triangle C P B prime --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft]
15
Find: STAC B C O B’ IAC STAC = STAA + LAC A R P LAC = R * IAC
is a right triangle, and Angle CB is equal to --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft]
16
Find: STAC B C O ICB’ B’ IAC STAC = STAA + LAC A R P LAC = R * IAC
Angle CB prime. [pause] From right triangle trigonometry, --- o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] ICB=ICB’
17
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= Angle CB prime is equal to the arc cosine of the length of B prime P, divided by the length of C P. ICB’=cos-1 CP o IAB=60 R=1,000 [ft] O=200 [ft]
18
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= The length of C P equals the Radius, R, 1,000 feet. And the length of B prime P equals --- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft]
19
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= the radius minus the offset between parallel Lines B and C, --- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O
20
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= or 1,000 feet minus 200 feet, which is 800 feet. ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
21
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= Plugging these triangle side lengths into the arc cosine equation, --- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
22
Find: STAC B C O ICB’ B’ IAC IAC=IAB-ICB A R ICB=ICB’ P 36.870 B’P
STAA= Angle CB prime equals degrees. Therefore, Angle CB also equals --- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
23
Find: STAC B C O ICB B’ IAC IAC=IAB-ICB A R ICB=ICB’ P 36.870 B’P
STAA= degrees. [pause] Plugging in Angle AB and --- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
24
Find: STAC B C O 36.87 ICB B’ IAC IAC=IAB-ICB A R ICB=ICB’ P B’P
STAA= Angle CB, we find Angle AC equals ---- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
25
Find: STAC B C O 36.87 ICB B’ IAC IAC=IAB-ICB A 23.13 R ICB=ICB’ P B’P
STAA= 23.13 degrees, which converts to ---- ICB’=cos-1 CP o IAB=60 R=1,000 [ft] CP=R=1,000 [ft] O=200 [ft] B’P=R-O=800 [ft]
26
Find: STAC B C O ICB B’ IAC STAC = STAA + LAC A R P LAC = R * IAC
radians. [pause] 23.13 rad o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] o 36.87
27
Find: STAC B C O ICB B’ IAC STAC = STAA + LAC A R P LAC = R * IAC
times the radius of the curve, 1,000 feet, equals ---- 23.13 rad o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] o 36.87
28
Find: STAC B C O ICB B’ IAC STAC = STAA + LAC A 403.7 [ft] R P
LAC = R * IAC o STAA= 403.7 feet, the length of Arc AC. [pause] Adding together the length of Arc AC and the ---- 23.13 rad o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] o 36.87
29
Find: STAC B C O ICB B’ IAC STAC = STAA + LAC A 403.7 [ft] R P
LAC = R * IAC o STAA= stationing at Point A, the stationing at Point C equals --- 23.13 rad o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] o 36.87
30
Find: STAC B C 19+53.70 ICB B’ IAC STAC = STAA + LAC A 403.7 [ft] R P
LAC = R * IAC o STAA= [pause] 23.13 rad o IAC=IAB-ICB IAB=60 R=1,000 [ft] O=200 [ft] o 36.87
31
Find: STAC B C 19+53.70 ICB B’ IAC STAC = STAA + LAC A 403.7 [ft] R P
19+00 19+50 20+00 20+50 STAA= When reviewing the possible solutions, ---- o IAB=60 R=1,000 [ft] O=200 [ft]
32
Find: STAC B C 19+53.70 ICB B’ IAC STAC = STAA + LAC A 403.7 [ft] R P
19+00 19+50 20+00 20+50 STAA= the answer is B. AnswerB o IAB=60 R=1,000 [ft] O=200 [ft]
33
? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1
Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.