Download presentation
Presentation is loading. Please wait.
Published byBrielle Poppe Modified over 10 years ago
1
The energy issue and the possible contribution of various nuclear energy production scenarios part II H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat »
3
IPCC projections 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity
4
IEAs successive Prospects fo Nuclear (World Energy Outlook) 20202030 MtoeTWh% WEO 19986042317 8 WEO 20006172369 9 WEO 20027192758 117032697 9 WEO 20047762975 127642929 9 WEO 20068613304 10 Alt. 2006 1070 4106 14
5
Prospect for nuclear production 2000-2030 TWh (AIEA July 2006) 0 200 400 600 800 1000 1200 1400 Am NW EurAfr Pacif 2000 2010 b 2010 H 2020 b 2020 H 2030 b 2030 H Am L Eur E MO+As S Ext. O
7
Nuclear Intensive Scenarios Scenarios by difference: P.A.Bauquis D.Heuer and E.Merle Objective oriented Scenarios H.Nifenecker et al.
8
No miracle from renewables Hydro: Limitation of ressource (Europe-USA) Environment and localization (Am.Sud, Asie, Afrique, Russie) Large Investments Reliable, available Might provide 20% of world electricity. France: 70TWh/450 Wind « fatal » Energy Limit: 10-15% of electricity production
9
No miracle with renewables Solar PV: Ideal for isolated sites (Africa, SE Asia). Mostly artificial in Developed Countries and very expansive Thermal: interesting for heating and warm water Thermodynamic: Fiability? Hot and dry climates Hot and dry climate. Biomass Bio-fuels (10 Mtep/50) Wood energy. Competition with food, energy and environmental balance
11
Pierre René Bauquis
12
Renewable energies
13
Renewable electricity
14
A vision of energy mix by 2050
15
Energy mix in 2050
16
CO2 emissions
17
Nuclear production In Bauquis Scenario Nuclear production 0.6 Gtep 4 Gtep i.e. x 6.5
19
Primary Energy (GTEP) 20002050 Fossils7.5 Hydro0.71.4 Wood1.21.1 Renewable0.25.2 Nuclear0.65.2 Total10.220.4 – Stabilization of fossile contribution – World energy consumption x 2 – Renewable = nuclear Hypothesis 2050 Multiplication by factor 8 Then increase by 1.2%/year up to 2100 Nuclear : Elsa Merle and Daniel Heuer
21
Objective oriented scenarios H.Nifenecker et al.
22
2000 IIASA-WEC Scenarios A: strong growth –A1: Oil –A2: Coal –A3:Gaz B: Middle of the road C: Low energy intensity. High electricity –C1: Ren.+Gaz –C2: Ren.+Nuclear
23
GDP/cap
24
Energy intensities
25
World GDPWorld GDP B2: 110 000
26
Primary energy per fuel
27
Exhaustion of fossile reserves (Gtoe) Exhaustion of fossile reserves
28
Minimize use of fossils for Electricity « Reasonable » Development of Nuclear OECD: 85% Transition: 50% China, India, Latin America: 30% 3000 GWe Nuclear 2030-20502030-2050 2050 Minimize use of coal and gas 30% coal China, India; 30% gas Russia; 100% Africa 7500 GWe Nucléaire 2030
29
Scenario no coal no gaz in 2050 B2=18000, Nuclear=1450
30
CO2/GDP
31
CO2/primen
32
Gestion of Natural Uranium Reserves
33
Unat exhaustion
34
Breeding Cycles
35
U-Pu versus Th-U cycles U-Pu Fast Spectra Pu fuel 1.2 GWe reactors Solid fuels 1 year cooling 25 years doubling time Th-U Thermal Spectra Pu, then 233 U fuel 1 GWe reactors Molten Salts fuel 10 days fuel cycling 25 years doubling time U-Pu vs Th-U
36
Nb GWe
37
Pu inventory
38
Nb GWe Th-U
39
U3 inventory
40
Trajectory
41
Stabilisation TStabilisation T Stabilization of CO2 concentration to 450 ppm Stabilization of temperature
43
E.Merle, D.Heuer Alternative 3 components
44
Reactor type 3rd Generation Sodium Fast Neutron Reactors Thorium molten salt reactor Power(GWe)1.451.0 Date201020252030 FuelUOXMox U-PuThorium + 233 U Fissile component4.9 % ( 235 U)11 % ( 239 Pu)3 % ( 233 U) Scenario without Th : Plutonium Production250 kg/year300 kg/year (breeding)- Scenario with Th : 233 U Balance130 kg/year500 kg/yearbreeding Pu Balance130 kg/year-200 kg/year incineration 4 kg/year Reactor types
45
Les RNR ferment le cycle U/Pu 233 U production: 450 PWR and 300 FNR nat U consumption: 7 million tons by 2100 10 times less fissile matter in fuel cycle Minor actinides production minimized 3 components
47
R and D needs standard reactors PWR reactors Selective reprocessing: extraction of Cs, Sr and M.A. Th-Pu MOx fuel in order to produce U233 Candu type reactors Use of Th-Pu and, then Th-U3 fuel Reprocssing of Th-U3 fuel Optimization of fuel regeneration
48
R and D needs fast neutron reactors Sodium cooled Void coefficient Core Recompaction Th blanket Reprocessing of Th blanket Lead cooled reactors Corrosion problems Pb-Bi alloys Molten salt cooled reactors Chemical composition Corrosion Gas cooled reactors Reprocessing of refractory fuels
49
R and D needs molten salt reactors Neutron spectrum optimization Corrosion Fuel reprocessing
50
Proliferation Political or technical question?
51
References http://www.iiasa.ac.au/web-apps/ggi/ GgiDb/dsd?Action=htmlpage&page=series Scenarios with an Intensive Contribution of Nuclear Energy to the World Energy Supply H.Nifenecker et al. Published in IEJE 1999 Scenarios for a Worldwide Deployment of Nuclear Energy Production E. Merle-Lucotte1, D. Heuer, C. Le Brun & J-M. Loiseaux Note LPSC 05-73 LEnergie de demain: techniques, environnement,économie, J.L.Bobin, E.Huffer, H.Nifenecker, EDP Sciences 2005, p.81-111 Accelerator Driven Subcritical Reactors, H.Nifenecker, S.David, O.Méplan, IOP 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.