Presentation is loading. Please wait.

Presentation is loading. Please wait.

The energy issue and the possible contribution of various nuclear energy production scenarios part II H.Nifenecker Scientific consultant LPSC/CNRS Chairman.

Similar presentations


Presentation on theme: "The energy issue and the possible contribution of various nuclear energy production scenarios part II H.Nifenecker Scientific consultant LPSC/CNRS Chairman."— Presentation transcript:

1 The energy issue and the possible contribution of various nuclear energy production scenarios part II H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat »

2

3 IPCC projections 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity

4 IEAs successive Prospects fo Nuclear (World Energy Outlook) 20202030 MtoeTWh% WEO 19986042317 8 WEO 20006172369 9 WEO 20027192758 117032697 9 WEO 20047762975 127642929 9 WEO 20068613304 10 Alt. 2006 1070 4106 14

5 Prospect for nuclear production 2000-2030 TWh (AIEA July 2006) 0 200 400 600 800 1000 1200 1400 Am NW EurAfr Pacif 2000 2010 b 2010 H 2020 b 2020 H 2030 b 2030 H Am L Eur E MO+As S Ext. O

6

7 Nuclear Intensive Scenarios Scenarios by difference: P.A.Bauquis D.Heuer and E.Merle Objective oriented Scenarios H.Nifenecker et al.

8 No miracle from renewables Hydro: Limitation of ressource (Europe-USA) Environment and localization (Am.Sud, Asie, Afrique, Russie) Large Investments Reliable, available Might provide 20% of world electricity. France: 70TWh/450 Wind « fatal » Energy Limit: 10-15% of electricity production

9 No miracle with renewables Solar PV: Ideal for isolated sites (Africa, SE Asia). Mostly artificial in Developed Countries and very expansive Thermal: interesting for heating and warm water Thermodynamic: Fiability? Hot and dry climates Hot and dry climate. Biomass Bio-fuels (10 Mtep/50) Wood energy. Competition with food, energy and environmental balance

10

11 Pierre René Bauquis

12 Renewable energies

13 Renewable electricity

14 A vision of energy mix by 2050

15 Energy mix in 2050

16 CO2 emissions

17 Nuclear production In Bauquis Scenario Nuclear production 0.6 Gtep 4 Gtep i.e. x 6.5

18

19 Primary Energy (GTEP) 20002050 Fossils7.5 Hydro0.71.4 Wood1.21.1 Renewable0.25.2 Nuclear0.65.2 Total10.220.4 – Stabilization of fossile contribution – World energy consumption x 2 – Renewable = nuclear Hypothesis 2050 Multiplication by factor 8 Then increase by 1.2%/year up to 2100 Nuclear : Elsa Merle and Daniel Heuer

20

21 Objective oriented scenarios H.Nifenecker et al.

22 2000 IIASA-WEC Scenarios A: strong growth –A1: Oil –A2: Coal –A3:Gaz B: Middle of the road C: Low energy intensity. High electricity –C1: Ren.+Gaz –C2: Ren.+Nuclear

23 GDP/cap

24 Energy intensities

25 World GDPWorld GDP B2: 110 000

26 Primary energy per fuel

27 Exhaustion of fossile reserves (Gtoe) Exhaustion of fossile reserves

28 Minimize use of fossils for Electricity « Reasonable » Development of Nuclear OECD: 85% Transition: 50% China, India, Latin America: 30% 3000 GWe Nuclear 2030-20502030-2050 2050 Minimize use of coal and gas 30% coal China, India; 30% gas Russia; 100% Africa 7500 GWe Nucléaire 2030

29 Scenario no coal no gaz in 2050 B2=18000, Nuclear=1450

30 CO2/GDP

31 CO2/primen

32 Gestion of Natural Uranium Reserves

33 Unat exhaustion

34 Breeding Cycles

35 U-Pu versus Th-U cycles U-Pu Fast Spectra Pu fuel 1.2 GWe reactors Solid fuels 1 year cooling 25 years doubling time Th-U Thermal Spectra Pu, then 233 U fuel 1 GWe reactors Molten Salts fuel 10 days fuel cycling 25 years doubling time U-Pu vs Th-U

36 Nb GWe

37 Pu inventory

38 Nb GWe Th-U

39 U3 inventory

40 Trajectory

41 Stabilisation TStabilisation T Stabilization of CO2 concentration to 450 ppm Stabilization of temperature

42

43 E.Merle, D.Heuer Alternative 3 components

44 Reactor type 3rd Generation Sodium Fast Neutron Reactors Thorium molten salt reactor Power(GWe)1.451.0 Date201020252030 FuelUOXMox U-PuThorium + 233 U Fissile component4.9 % ( 235 U)11 % ( 239 Pu)3 % ( 233 U) Scenario without Th : Plutonium Production250 kg/year300 kg/year (breeding)- Scenario with Th : 233 U Balance130 kg/year500 kg/yearbreeding Pu Balance130 kg/year-200 kg/year incineration 4 kg/year Reactor types

45 Les RNR ferment le cycle U/Pu 233 U production: 450 PWR and 300 FNR nat U consumption: 7 million tons by 2100 10 times less fissile matter in fuel cycle Minor actinides production minimized 3 components

46

47 R and D needs standard reactors PWR reactors Selective reprocessing: extraction of Cs, Sr and M.A. Th-Pu MOx fuel in order to produce U233 Candu type reactors Use of Th-Pu and, then Th-U3 fuel Reprocssing of Th-U3 fuel Optimization of fuel regeneration

48 R and D needs fast neutron reactors Sodium cooled Void coefficient Core Recompaction Th blanket Reprocessing of Th blanket Lead cooled reactors Corrosion problems Pb-Bi alloys Molten salt cooled reactors Chemical composition Corrosion Gas cooled reactors Reprocessing of refractory fuels

49 R and D needs molten salt reactors Neutron spectrum optimization Corrosion Fuel reprocessing

50 Proliferation Political or technical question?

51 References http://www.iiasa.ac.au/web-apps/ggi/ GgiDb/dsd?Action=htmlpage&page=series Scenarios with an Intensive Contribution of Nuclear Energy to the World Energy Supply H.Nifenecker et al. Published in IEJE 1999 Scenarios for a Worldwide Deployment of Nuclear Energy Production E. Merle-Lucotte1, D. Heuer, C. Le Brun & J-M. Loiseaux Note LPSC 05-73 LEnergie de demain: techniques, environnement,économie, J.L.Bobin, E.Huffer, H.Nifenecker, EDP Sciences 2005, p.81-111 Accelerator Driven Subcritical Reactors, H.Nifenecker, S.David, O.Méplan, IOP 2004


Download ppt "The energy issue and the possible contribution of various nuclear energy production scenarios part II H.Nifenecker Scientific consultant LPSC/CNRS Chairman."

Similar presentations


Ads by Google