Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Ronald L. Carter

Similar presentations


Presentation on theme: "Professor Ronald L. Carter"— Presentation transcript:

1 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/
EE5342 – Semiconductor Device Modeling and Characterization Lecture 20 March 31, 2010 Professor Ronald L. Carter

2 Schedule Change Classes WILL be held on
4/5/10 4/7/10 Dr. Russell will be filling in The previously scheduled make-up classes will be cancelled 4/16/10 (Friday) 4/23/10 (Friday) Project 2 Test changed to W 4/28/10 L20 03/31/10

3 Inversion for p-Si Vgate>VTh>VFB
Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L20 03/31/10

4 Inversion for p-Si Vgate>VTh>VFB
Fig 10.5* L20 03/31/10

5 Approximation concept “Onset of Strong Inv”
OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L20 03/31/10

6 MOS Bands at OSI p-substr = n-channel
Fig 10.9* L20 03/31/10

7 Equivalent circuit above OSI
Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 Depl cap, C’d,min = eSi/xd,max Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’d,min L20 03/31/10

8 MOS surface states** p- substr = n-channel

9 n-substr accumulation (p-channel)
Fig 10.7a* L20 03/31/10

10 n-substrate depletion (p-channel)
Fig 10.7b* L20 03/31/10

11 n-substrate inversion (p-channel)
Fig 10.7* L20 03/31/10

12 Values for gate work function, fm

13 Values for fms with metal gate

14 Values for fms with silicon gate

15 Typical fms values Fig 10.15* fms (V) NB (cm-3) L20 03/31/10

16 Flat band with oxide charge (approx. scale)
SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20 03/31/10

17 Flat-band parameters for n-channel (p-subst)

18 Flat-band parameters for p-channel (n-subst)

19 Inversion for p-Si Vgate>VTh>VFB
Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L20 03/31/10

20 Approximation concept “Onset of Strong Inv”
OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L20 03/31/10

21 MOS Bands at OSI p-substr = n-channel
Fig 10.9* 2q|fp| qfp xd,max L20 03/31/10

22 Computing the D.R. W and Q at O.S.I.
Ex Emax x L20 03/31/10

23 Calculation of the threshold cond, VT

24 Equations for VT calculation

25 n-channel VT for VC = VB = 0
Fig 10.20* L20 03/31/10

26 Fully biased n-MOS capacitor
VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20 03/31/10 L

27 Fully biased MOS capacitor in inversion
Channel VG>VT VS=VC VD=VC EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L20 03/31/10 L

28 Flat band with oxide charge (approx. scale)
SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L20 03/31/10

29 Flat-band parameters for n-channel (p-subst)

30 MOS energy bands at Si surface for n-channel
Fig 8.10** L20 03/31/10

31 Computing the D.R. W and Q at O.S.I.
Ex Emax x L20 03/31/10

32 Q’d,max and xd,max for biased MOS capacitor
Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L20 03/31/10

33 Fully biased n- channel VT calc

34 L20 03/31/10

35 Computing the threshold voltage

36 L20 03/31/10

37 n-channel VT for VC = VB = 0
Fig 10.20* L20 03/31/10

38 Flat-band parameters for p-channel (n-subst)

39 Fully biased p- channel VT calc

40 p-channel VT for VC = VB = 0
Fig 10.21* L20 03/31/10

41 Ion implantation L20 03/31/10

42 “Dotted box” approx L20 03/31/10

43 L20 03/31/10

44 Mobilities L20 03/31/10

45 Differential charges for low and high freq
From Fig 10.27* L20 03/31/10

46 Ideal low-freq C-V relationship
Fig 10.25* L20 03/31/10

47 Comparison of low and high freq C-V
Fig 10.28* L20 03/31/10

48 Effect of Q’ss on the C-V relationship
Fig 10.29* L20 03/31/10

49 n-channel enhancement MOSFET in ohmic region
0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 L20 03/31/10

50 Conductance of inverted channel
Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) L20 03/31/10

51 Basic I-V relation for MOS channel

52 I-V relation for n-MOS (ohmic reg)
ID non-physical ID,sat saturated VDS,sat VDS L20 03/31/10

53 Universal drain characteristic
ID VGS=VT+3V 9ID1 ohmic saturated, VDS>VGS-VT VGS=VT+2V 4ID1 VGS=VT+1V ID1 VDS L20 03/31/10

54 Characterizing the n-ch MOSFET
VD ID D G S B VT VGS L20 03/31/10

55 Low field ohmic characteristics

56 MOSFET Device Structre Fig. 4-1, M&A*
L20 03/31/10

57 4-7a (A&M) L20 03/31/10

58 Figure 4-7b (A&M) L20 03/31/10

59 Figure 4-8a (A&M) L20 03/31/10

60 Figure 4-8b (A&M) L20 03/31/10

61 Body effect data Fig 9.9** L20 03/31/10

62 References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L20 03/31/10


Download ppt "Professor Ronald L. Carter"

Similar presentations


Ads by Google