Download presentation
Presentation is loading. Please wait.
Published byDalibor Vopička Modified over 5 years ago
1
. . Box and Whisker Measures of Variation Measures of Variation 8 12
16 20 24 28 32 36 40 44 48 52 56 60
2
Median 3, 4, 4, 5, 6, 7, 8 3, 4, 4, 5, 6, 7, 8, 9 Odd Number of Data
The middle number in a data set when the data are ordered from least to greatest. Odd Number of Data 3, 4, 4, 5, 6, 7, 8 Even Number of Data 3, 4, 4, 5, 6, 7, 8, 9 5 + 6 = 11 = 5.5
3
Measures of Variation Measures of variation are used to describe the distribution of the data. median 20, , , , , , , Lower quartile median Upper quartile = 44 = 52 = 61 = 26 61 2 = 22 2 = 30.5 44 Upper and Lower Quartiles The upper and lower quartiles are the medians of the upper half and lower half of a set of data, respectively. Lower quartile = 22 Upper quartile = 30.5 Interquartile Range The range of the middle half of the data. It is the difference between the upper quartile and the lower quartile. 30.5 – 22 = 8.5 Range The difference between the greatest and least data values 35 – 20 = 15
4
Measures of Variation 4, 4, 6, 7, 8, , , , Lower quartile median Upper quartile 5 8 13.5 Interquartile range 8.5 Range 19 - 4 15
5
Measures of Variation 4, 4, 6, 7, 8, , , Lower quartile median Upper quartile 5 7.5 11 Interquartile range 6 Range 15
6
Outlier An outlier is a data value that is either much greater or much less than the median. If a data value is more than 1.5 times the value of the interquartile range beyond the quartiles, is an outlier. 2, , , , , , , Upper quartile Lower quartile 22 26 Interquartile range 4 Outlier Test Outlier Test 22 – 6 = 16 = 32 If 2 is less than or equal to 16. It is an outlier If 31 is greater than or equal to 32. It is an outlier. 4 X 1.5 6 Subtract 6 Add 6 Pass Fail
7
9 4, 4, 6, 7, 8, 10, 12, 19 5 11 6 Outlier Test 7.5 Lower quartile
4, 4, 6, 7, 8, , , Lower quartile median Upper quartile 5 7.5 11 Interquartile range 6 5 – 9 = -4 = 20 Outlier Test Outlier Test 6 X 1.5 9
8
9 -7, 3, 5, 6, 8, 9, 11, 25 4 10 6 Outlier Test 7 Lower quartile
-7, 3, 5, 6, 8, 9, , Lower quartile median Upper quartile 4 7 10 Interquartile range 6 4 – 9 = -5 = 19 Outlier Test Outlier Test 6 X 1.5 9
9
12 -3, 4, 6, 7, 8, 9, 17, 24 5 13 8 Outlier Test 7.5 Lower quartile
-3, 4, 6, 7, 8, 9, , Lower quartile median Upper quartile 5 7.5 13 Interquartile range 8 5 – 12 = -7 = 25 Outlier Test Outlier Test 8 X 1.5 12
10
21 -3, -2, 4, 5, 5, 12, 18, 30 1 15 14 Outlier Test 5 Lower quartile
-3, , 4, 5, 5, , , Lower quartile median Upper quartile 1 5 15 Interquartile range 14 1 – 21 = -20 = 36 Outlier Test Outlier Test 14 X 1.5 21
11
Box-and-Whisker Plots
A box-and-whisker plot is a diagram that is constructed using the median, quartiles, and extreme values. A box is drawn around the quartile values, and the whiskers extend from each quartile to the extreme values. The median is marked with a vertical line. The outlier will be shown with a small symbol that is off the Box-and-Whisker Plot . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 median Lower extreme Upper extreme Lower quartile Upper quartile Interquartile range 42 – 30 = 12
12
Box-and-Whisker Plots
8, , , , , , , , , Lower quartile Upper quartile median . . 26 . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 Outlier Lower extreme median Upper extreme Outlier Lower quartile Upper quartile Interquartile range = 9
13
Box-and-Whisker Plots
8, , , , , , , , , , Lower quartile Upper quartile median . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 median Upper extreme Lower extreme Lower quartile Upper quartile Interquartile range = 12
14
Box-and-Whisker Plots
6, , , , , , , , , , Lower quartile Upper quartile median . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 median Lower extreme Upper extreme Lower quartile Upper quartile Outlier Interquartile range = 12
15
Box-and-Whisker Plots
12, , , , , , , , , , Lower quartile Upper quartile median . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 median Lower extreme Upper extreme Lower quartile Upper quartile
16
Box-and-Whisker Plots
8, 9, , , , , , , , , Lower quartile Upper quartile median . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 median Lower quartile Upper quartile Lower extreme Upper extreme
17
Box-and-Whisker Plots
16, , , , , , , , , , Lower quartile Upper quartile median . . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60
18
Box-and-Whisker Plots
. . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 Median_______________ Upper quartile_________ Lower quartile_________ Upper extreme________ Lower extreme________ Outlier_______________ 30 40 24 50 16 no outlier
19
Box-and-Whisker Plots
. . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 Median_______________ Upper quartile_________ Lower quartile_________ Upper extreme________ Lower extreme________ Outlier_______________ 42 50 32 60 26 8
20
Box-and-Whisker Plots
. . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 Median_______________ Upper quartile_________ Lower quartile_________ Upper extreme________ Lower extreme________ Outlier_______________ 36 44 32 52 28 10
21
Box-and-Whisker Plots
. . . 8 12 16 20 24 28 32 36 40 44 48 52 56 60 Median_______________ Upper quartile_________ Lower quartile_________ Upper extreme________ Lower extreme________ Outlier_______________ 18 26 13 32 8 60
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.