Presentation is loading. Please wait.

Presentation is loading. Please wait.

Volume 3, Issue 2, Pages (February 2019)

Similar presentations


Presentation on theme: "Volume 3, Issue 2, Pages (February 2019)"— Presentation transcript:

1 Volume 3, Issue 2, Pages 570-583 (February 2019)
Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts  Zelong Li, Yuanzhi Qu, Jijie Wang, Hailong Liu, Mingrun Li, Shu Miao, Can Li  Joule  Volume 3, Issue 2, Pages (February 2019) DOI: /j.joule Copyright © 2018 Elsevier Inc. Terms and Conditions

2 Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

3 Figure 1 Catalyst Characterization
(A) X-ray diffraction patterns of ZnZrO, H-ZSM-5, and ZnZrO/ZSM-5. (B) Transmission electron microscopy (TEM) and high-resolution TEM images of ZnZrO. (C) Aberration-corrected high-angle annular dark-field scanning TEM images and elemental distribution of Zn and Zr for ZnZrO. (D) SEM image of H-ZSM-5. (E) SEM image and scheme of ZnZrO/ZSM-5. Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

4 Figure 2 Catalytic Performance in CO2 Hydrogenation
(A) CO2 hydrogenation on ZnZrO/ZSM-5 (H-ZSM-5 with Si/Al ratio of 100) and ZnZrO and H-ZSM-5, and methanol conversion on ZnZrO/ZSM-5 and H-ZSM-5. (B) CO2 conversion over ZnZrO/ZSM-5 (H-ZSM-5 with different Si/Al ratios), hydrocarbon distribution, and CO selectivity. (C) Hydrocarbon distribution and CO2 conversion over ZnZrO/ZSM-5 with different space velocities. (D) CO2 conversion over ZnZrO/ZSM-5, hydrocarbon distribution, and CO selectivity at different reaction temperatures. Reaction conditions: ZnZrO/ZSM-5: 320°C, 4 MPa, 1,200 mL/gcat/h; ZnZrO: 320°C, 4 MPa, 2,400 mL/gcat/h (A); 320°C, 4 MPa, 1,200 mL/gcat/h (B); 320°C, 4 MPa (C); 4 MPa, 1,200 mL/gcat/h (D). Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

5 Figure 3 Tandem Reaction Coupling
(A) Hydrogenation of CO2 over ZnZrO/ZSM-5, integrated catalyst components ZnZrO and H-ZSM-5 with different proximity (1.0 g, 320°C, 4.0 MPa, 1,200 mL/gcat/h). (B) Hydrogenation of CO2 over ZnZrO and ZnZrO/ZSM-5 at reaction temperatures of 280°C–360°C (0.5 g, 4 MPa, 2,400 mL/gcat/h for ZnZrO; 1.0 g, 4 MPa, 1,200 mL/gcat/h for ZnZrO/ZSM-5). Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

6 Figure 4 Reaction Intermediate Species
(A) In situ DRIFT spectra from CO2 hydrogenation over ZnZrO and ZnZrO/ZSM-5 at different temperatures. (B) Chemical trapping mass spectrometry results in a trapping reagent CD3OD during the CO2 hydrogenation over ZnZrO at reaction temperatures of 320°C. (C) IR spectra for SBA-15, NH2-SBA-15, ZnZrO/NH2-SBA, and ZnZrO/NH2-SBA after performing CO2 hydrogenation reaction and ZnZrO/NH2-SBA after performing methanol reaction. (D) IGA results of H-ZSM-5 for conversion of methanol to aromatics and ZnZrO/ZSM-5 for hydrogenation of CO2 to aromatics. (E) Mass spectrometry results for CO2 hydrogenation to hydrocarbon. (F) Mass spectrometry results for methanol conversion to hydrocarbon. Reaction conditions: in (A) and (B) 0.1 MPa, 3,600 mL/gcat/h; in (C) to (F) 320°C, 3,600 mL/gcat/h. Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

7 Figure 5 The Effect of H2O on CO2 Hydrogenation to Aromatics
(A) Ethene conversion over H-ZSM-5 with co-feeding different content of H2O (0.5 g, 320°C, 4.0 MPa, 1,200 mL/gcat/h). (B) The normalized content of strong and weak acid sites for H-ZSM-5 with different treatment (a, the pristine H-ZSM-5; b, with pre-adsorption H2O at room temperature; c, with pre-adsorption of ethene; d, with adsorption of ethene after adsorption of H2O). Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

8 Figure 6 The Effect of H2 on CO2 Hydrogenation to Aromatics and 13CO2 Isotope Experiment (A) CO2 hydrogenation over ZnZrO/ZSM-5 with different CO2/H2 ratios. (B) Methanol and ethene conversion to aromatics over H-ZSM-5 under different atmospheres. I: methanol conversion over H-ZSM-5 under Ar; II: methanol conversion over H-ZSM-5 under 50% Ar and 50% H2; III: ethene conversion over H-ZSM-5 under Ar; IV: ethene conversion over H-ZSM-5 under 40% Ar and 50% H2 (catalyst: H-ZSM g; reaction conditions: 320°C, 20 mL/min, 4.0 MPa). (C) Mass spectrometry results upon introducing 13CO2 during the ethene conversion over ZnZrO/ZSM-5 at reaction temperature of 320°C (0.1 MPa). Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

9 Figure 7 Stability of Tandem Catalysts and the Retained Species over Catalysts on CO2 Hydrogenation to Aromatics and Methanol Conversion to Aromatics (A) Stability test for ZnZrO/ZSM-5. Reaction conditions of CO2 hydrogenation for ZnZrO/ZSM-5: 1.0 g, 320°C, 4.0 MPa, 1,200 mL/gcat/h. (B) The chromatogram result of the retained species for methanol conversion to aromatics and CO2 hydrogenation to aromatics. Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions

10 Figure 8 Schematic for the Proposed Reaction Mechanism of CO2 Hydrogenation on the Tandem Catalyst, ZnZrO/ZSM-5 Joule 2019 3, DOI: ( /j.joule ) Copyright © 2018 Elsevier Inc. Terms and Conditions


Download ppt "Volume 3, Issue 2, Pages (February 2019)"

Similar presentations


Ads by Google