Download presentation
Presentation is loading. Please wait.
1
Chapter 20 Biotechnology
2
Overview: The DNA Toolbox
Sequencing of the human genome was completed by 2007 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant DNA, nucleotide sequences from two different sources, often two species, are combined in vitro into the same DNA molecule
3
DNA Cloning and Its Applications: A Preview
Most methods for cloning pieces of DNA in the laboratory share general features, such as the use of bacteria and their plasmids Plasmids are small circular DNA molecules that replicate separately from the bacterial chromosome Cloned genes are useful for making copies of a particular gene and producing a protein product
4
Gene cloning involves using bacteria to make multiple copies of a gene
Foreign DNA is inserted into a plasmid, and the recombinant plasmid is inserted into a bacterial cell Reproduction in the bacterial cell results in cloning of the plasmid including the foreign DNA This results in the production of multiple copies of a single gene
5
Figure 20.2 A preview of gene cloning and some uses of cloned genes
Cell containing gene of interest Bacterium 1 Gene inserted into plasmid Bacterial chromosome Plasmid Gene of interest Recombinant DNA (plasmid) DNA of chromosome 2 Plasmid put into bacterial cell Recombinant bacterium 3 Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of Interest Protein expressed by gene of interest Copies of gene Protein harvested Figure 20.2 A preview of gene cloning and some uses of cloned genes 4 Basic research and various applications Basic research on gene Basic research on protein Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth
6
Using Restriction Enzymes to Make Recombinant DNA
Bacterial restriction enzymes cut DNA molecules at specific DNA sequences called restriction sites A restriction enzyme usually makes many cuts, yielding restriction fragments The most useful restriction enzymes cut DNA in a staggered way, producing fragments with “sticky ends” that bond with complementary sticky ends of other fragments Animation: Restriction Enzymes
7
DNA ligase is an enzyme that seals the bonds between restriction fragments
8
Restriction enzyme cuts sugar-phosphate backbones.
Fig Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end 2 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. Figure 20.3 Using a restriction enzyme and DNA ligase to make recombinant DNA One possible combination 3 DNA ligase seals strands. Recombinant DNA molecule
9
For example, if the desired gene is
A probe can be synthesized that is complementary to the gene of interest For example, if the desired gene is – Then we would synthesize this probe … … 5 G G C T A A C T T A G C 3 3 C C G A T T G A A T C G 5
10
The DNA probe can be used to screen a large number of clones simultaneously for the gene of interest
Once identified, the clone carrying the gene of interest can be cultured
11
Radioactively labeled probe molecules
Fig. 20-7 TECHNIQUE Radioactively labeled probe molecules Probe DNA Gene of interest Multiwell plates holding library clones Single-stranded DNA from cell Film • Figure 20.7 Detecting a specific DNA sequence by hybridizing with a nucleic acid probe Nylon membrane Nylon membrane Location of DNA with the complementary sequence
12
Expressing Cloned Eukaryotic Genes
After a gene has been cloned, its protein product can be produced in larger amounts for research Cloned genes can be expressed as protein in either bacterial or eukaryotic cells
13
Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR)
The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA A three-step cycle—heating, cooling, and replication—brings about a chain reaction that produces an exponentially growing population of identical DNA molecules
14
molecules; 2 molecules (in white boxes) match target sequence
Fig. 20-8 TECHNIQUE 5 3 Target sequence Genomic DNA 3 5 1 Denaturation 5 3 3 5 2 Annealing Cycle 1 yields 2 molecules Primers 3 Extension New nucleo- tides Figure 20.8 The polymerase chain reaction (PCR) Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence
15
Gel Electrophoresis and Southern Blotting
One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis This technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size A current is applied that causes charged molecules to move through the gel Molecules are sorted into “bands” by their size Video: Biotechnology Lab
16
Figure 20.9 Gel electrophoresis
TECHNIQUE Mixture of DNA mol- ecules of different sizes Power source – Cathode Anode + Gel 1 Power source – + Longer molecules 2 Shorter molecules RESULTS Figure 20.9 Gel electrophoresis
17
In restriction fragment analysis, DNA fragments produced by restriction enzyme digestion of a DNA molecule are sorted by gel electrophoresis Restriction fragment analysis is useful for comparing two different DNA molecules, such as two alleles for a gene The procedure is also used to prepare pure samples of individual fragments
18
Fig Normal -globin allele Normal allele Sickle-cell allele 175 bp 201 bp Large fragment DdeI DdeI DdeI DdeI Large fragment Sickle-cell mutant -globin allele 376 bp 201 bp 175 bp 376 bp Large fragment DdeI Figure Using restriction fragment analysis to distinguish the normal and sickle-cell alleles of the β-globin gene DdeI DdeI (a) DdeI restriction sites in normal and sickle-cell alleles of -globin gene (b) Electrophoresis of restriction fragments from normal and sickle-cell alleles
19
Reverse transcriptase-polymerase chain reaction (RT-PCR) is quicker and more sensitive
Reverse transcriptase is added to mRNA to make cDNA, which serves as a template for PCR amplification of the gene of interest The products are run on a gel and the mRNA of interest identified
20
TECHNIQUE 1 cDNA synthesis mRNAs cDNAs Primers 2 -globin gene 3
Fig TECHNIQUE 1 cDNA synthesis mRNAs cDNAs Primers 2 PCR amplification -globin gene 3 Gel electrophoresis Figure RT-PCR analysis of expression of single genes Embryonic stages RESULTS
21
In situ hybridization uses fluorescent dyes attached to probes to identify the location of specific mRNAs in place in the intact organism
22
Fig Figure Determining where genes are expressed by in situ hybridization analysis 50 µm
23
TECHNIQUE RESULTS Mammary cell donor Egg cell donor
Fig TECHNIQUE Mammary cell donor Egg cell donor 1 2 Egg cell from ovary Nucleus removed Cultured mammary cells 3 Cells fused 3 Nucleus from mammary cell 4 Grown in culture Early embryo Figure Reproductive cloning of a mammal by nuclear transplantation For the Discovery Video Cloning, go to Animation and Video Files. 5 Implanted in uterus of a third sheep Surrogate mother 6 Embryonic development Lamb (“Dolly”) genetically identical to mammary cell donor RESULTS
24
Stem Cells of Animals A stem cell is a relatively unspecialized cell that can reproduce itself indefinitely and differentiate into specialized cells of one or more types Stem cells isolated from early embryos at the blastocyst stage are called embryonic stem cells; these are able to differentiate into all cell types The adult body also has stem cells, which replace nonreproducing specialized cells
25
From bone marrow in this example
Fig Embryonic stem cells Adult stem cells Early human embryo at blastocyst stage (mammalian equiva- lent of blastula) From bone marrow in this example Cells generating all embryonic cell types Cells generating some cell types Cultured stem cells Different culture conditions Figure Working with stem cells Different types of differentiated cells Liver cells Nerve cells Blood cells
26
Fig (a) This photo shows Earl Washington just before his release in 2001, after 17 years in prison. Source of sample STR marker 1 STR marker 2 STR marker 3 Figure STR analysis used to release an innocent man from prison For the Discovery Video DNA Forensics, go to Animation and Video Files. Semen on victim 17, 19 13, 16 12, 12 Earl Washington 16, 18 14, 15 11, 12 Kenneth Tinsley 17, 19 13, 16 12, 12 (b) These and other STR data exonerated Washington and led Tinsley to plead guilty to the murder.
27
Environmental Cleanup
Genetic engineering can be used to modify the metabolism of microorganisms Some modified microorganisms can be used to extract minerals from the environment or degrade potentially toxic waste materials Biofuels make use of crops such as corn, soybeans, and cassava to replace fossil fuels
28
Most public concern about possible hazards centers on genetically modified (GM) organisms used as food Some are concerned about the creation of “super weeds” from the transfer of genes from GM crops to their wild relatives
29
DNA fragments from genomic DNA or cDNA or copy of DNA obtained by PCR
Fig. 20-UN3 DNA fragments from genomic DNA or cDNA or copy of DNA obtained by PCR Vector Cut by same restriction enzyme, mixed, and ligated Recombinant DNA plasmids
30
TCCATGAATTCTAAAGCGCTTATGAATTCACGGC AGGTACTTAAGATTTCGCGAATACTTAAGTGCCG
Fig. 20-UN4 5 TCCATGAATTCTAAAGCGCTTATGAATTCACGGC 3 3 AGGTACTTAAGATTTCGCGAATACTTAAGTGCCG 5 Aardvark DNA G A A T T C T T A C A G Plasmid
31
Fig. 20-UN7
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.