Presentation is loading. Please wait.

Presentation is loading. Please wait.

N-METHYL INVERSION IN PSEUDO-PELLETIERINE

Similar presentations


Presentation on theme: "N-METHYL INVERSION IN PSEUDO-PELLETIERINE"— Presentation transcript:

1 N-METHYL INVERSION IN PSEUDO-PELLETIERINE
MI-08 N-METHYL INVERSION IN PSEUDO-PELLETIERINE Montserrat Vallejo, Patricia Écija, Alberto Lesarri, Francisco J. Basterretxea, José A. Fernández, Emilio J. Cocinero

2 Outline Tropane alkaloids: Interest & Biological functions
Pseudo-pelletierine Conformational composition: Ax & Eq Rotational analysis: Ax (9 isotop), Eq (1 isotop) Structural results: rs, r0, semi-exp MEM re Conformational equilibria Pseudo-pelletierine vs Tropinone Methyl-piperidone Piperidine Structural phenomena

3 Tropane alkaloids N-methyl-[3.2.1]-azabycicle motif:
Secondary metabolites Natural & Pharmacological products Anticholinergics Block acetylcholine neurotransmitter CNS & PNS Neurostimulants

4 Tropane alkaloids Relevant compounds:

5 Tropane alkaloids Rotational analysis: PCCP, 2010, 12, 6076 CPC, 2016
JPCA, 2010, 115, 9545 CPC, 2013, 14, 1830 9-methyl-[3.3.1]-nonan-3-one

6 Conformational composition
Boat-Boat Eq MP2/ G(d,p) Boat-Chair Eq Ax Ax D(E+ZPE) Chair-Chair DG Eq Ax Pseudo-pelletierine

7 Molecular models Theory MP2 chair-chair boat-chair boat-boat Ax Eq
Theory MP2 chair-chair boat-chair boat-boat Ax Eq A / MHz 1397.3 1678.1 1402.2 1647.0 1713.6 1771.1 B / MHz 1197.0 1018.8 1198.9 1034.4 975.5 939.4 C / MHz 1037.8 1012.6 1033.0 1013.2 954.7 920.2 χaa / MHz -3.2 2.0 -3.9 1.7 -4.3 -2.7 χbb / MHz 0.60 -4.7 1.3 -4.5 1.6 χcc / MHz 2.6 2.7 1.1 |μa| / D 2.5 3.4 2.3 3.2 2.4 3.9 |μb| / D 0.68 0.02 0.78 0.35 0.04 |μc| / D 0.0 0.44 0.92 |μTOT| / D 2.9 3.3 4.0 ΔJ / Hz 47.5 41.0 134.38 111.37 32.71 28.42 ΔJK / kHz 0.20 0.16 -0.04 0.05 0.14 0.49 ΔK / Hz -124.0 -89.6 -35.69 -57.07 244.79 δJ / Hz 5.0 -0.4 31.37 9.67 4.74 -2.52 δK / kHz 0.03 -1.04 -0.18 0.15 ΔG / kJ mol-1 2.2 19.8 38.2 38.6 42.0 Δ(E+ZPE) 20.6 30.8 39.6 44.0

8 Rotational spectrum FT-MW 4-18 GHz Heating nozzle 80ºC Ne, 1-4 bar
Experimental FT-MW 4-18 GHz Heating nozzle 80ºC Ne, 1-4 bar Two chair-chair species Axial: more intense Equatorial Dominant ma-spectrum mb in axial mc zero by symmetry Axial – Ab initio

9 Rotational parameters
41,4-31,3 Axial Equatorial A / MHz (70) (16) B / MHz (10) (96) C / MHz (91) (96) ΔJ / kHz (13) (92) ΔJK / kHz (90) 0.172 (16) ΔK / kHz (26) [0.0] δJ / Hz δK / Hz (46) χaa / MHz (51) 1.935 (11) χbb / MHz (59) (36) χcc / MHz (59) 2.561 (36) |μa| / D Observed |μb| / D Not observed |μc| / D Not Observed N 94 54 σ / kHz 1.8 1.5 ΔE / kJ mol-1 0.0 2.3 Axial Equatorial 41,4-31,3

10 Isotopologues: Axial 41,4-31,3

11 Isotopologues: Axial All 13C, 15N, 18O species for axial
Only parent in equatorial 13C1 - 13C5 13C2 - 13C4 13C3 13C6 - 13C8 13C7 15N9 13C10 18O11 A/ MHz (60) (80) (39) (70) (10) (29) (12) (10) B/ MHz (12) (17) (61) (17) (30) (61) (31) (79) C/ MHz (19) (23) (18) (20) (30) (66) (37) (11) σ / kHz 0.56 0.61 0.49 0.59 0.65 0.01 1.7 0.27 N 14 15 12 11 5

12 Structure: Axial Substitution (Kraitchman) coordinates Atom a b
13C1 - 13C5 (23) 0.053 (29) (13) 13C2 - 13C4 (21) (24) (13) 13C3 (98) (32) 0.00 13C6 - 13C8 0.6915(23) (11) 1.2573(13) 13C7 0.046 (36) (81) 0.072 (23) 15N9 (18) (48) 13C10 (97) (88) 18O11 (58) (51)

13 Structure: Axial Effective structure rms deviation = 0.068 MHz Species
Exp O-C Parent A 0.085 B 0.012 C 0.021 13C(1) 0.068 0.005 -0.008 13C(2) 0.025 -0.089 0.003 13C(3) 0.004 0.000 -0.004 13C(4) 0.049 -0.092 13C(5) 0.056 -0.006 13C(8) 0.006 0.054 15N(9) -0.005 13C(10) 0.041 -0.038 -0.036 18O(11) -0.239 -0.544 0.059 Effective structure rms deviation = MHz

14 Structure: rs vs r0 rs r0

15 Structure: Axial vs Equatorial
Axial Equatorial rs r0 Ab initio re r (C1-C2) / Å 1.557 (17) 1.549 (14) 1.550 1.539 r (C2-C3) / Å 1.518 (19) 1.517 (17) 1.516 1.518 r (C5-C6) / Å 1.48 (3) 1.533 (9) 1.533 1.540 r (C6-C7) / Å 1.58 (2) 1.532 (22) r (C1-N) / Å 1.48 (2) 1.467 (18) 1.467 1.470 r (N-C10) / Å 1.462 (6) 1.457 (7) 1.458 r (C3-O) / Å 1.199 (3) 1.222 (6) 1.221 1.222 (C1-C2-C3) / deg 112.8 (9) 113.1 (12) 113.9 113.4 (C2-C3-O) / deg 122.3 (16) 122.2 (13) 122.9 112.1 (C2-C3-C4) / deg 115.0 (3) 116.3 (9) 114.4 115.7 (C4-C5-C6) / deg 114.3 (13) 112.5 (11) 112.0 112.3 (C5-C6-C7) / deg 111.0 (6) 112.1 (12) 111.6 (C6-C7-C8) / deg 104.9 (18) 109.7 (17) 110.4 110.2 (C1-N-C5) / deg 109.0 (14) 110.5 (9) 110.0 110.3 (C1-N-C10) / deg 115.1 (48) 113.6 (14) 113.1

16 Structure: Axial vs Equatorial
Axial Equatorial rs r0 Ab initio re τ (C1-C2-C3-O) / deg -33.9 (18) -37.1 (13) -38.5 -36.1 τ (C1-C2-C3-C4) / deg 139.1 (16) 142.8 (16) 139.6 141.4 τ (C6-C5-C4-C3) / deg (17) (19) -107.1 -106.2 τ (C7-C6-C5-C4) / deg 116.4 (15) 113.2 (20) 112.2 112.4 τ (C8-C7-C6-C5) / deg 124.1 (21) 128.7 (20) 129.9 129.3 τ (C2-C1-N-C10) / deg (43) (19) -111.5 163.8 τ (C3-C2-C1-N) / deg (25) (15) 130.0 -128.4 τ (C8-C1-N-C10) / deg 14.8 (25) 14.5 (19) 13.4 108.7 τ (C7-C8-C1-N) / deg 118.3 (29) 123.2 (21) 122.7 125.3

17 Structure: Semi-Experimental re
Semiexperimental structure: Jean Demaison Mixed-Estimation-Method: Rovibrational calculations (cubic force field) Predicate least-squares-fit using ab initio data Previous applications: Tropinone Methyl-piperidone (JPCA 2012, 116, 8684)

18 Conformational equilibria
Axial dominant Relative intensities: Nax / Neq = 2 / 1 Interconversion barriers: 28.4 kJ mol-1

19 Conformational equilibria
Equatorial species preference due to: Carbon bridge destabilizing role N delocalization 1,3-diaxial interactions Axial preference in: Pseudo-Pelletierine DE / kJ mol-1 V / kJ mol-1 N-methyl-piperidine N-methyl-piperidone 9.4 30.7 Tropinone 2.3 39.7 Pseudo-Pelletierine -2.4 28.4

20 Acknowledgements Funding: Spanish Gov. – MINECO CT2015-39132
M. Vallejo M. Gigosos M. Jaraiz M. Vallejo P. Écija F. Basterretxea A. Fernández E. J. Cocinero Funding: Spanish Gov. – MINECO CT


Download ppt "N-METHYL INVERSION IN PSEUDO-PELLETIERINE"

Similar presentations


Ads by Google