Download presentation
Presentation is loading. Please wait.
1
Roots of polynomials
2
FM Roots of polynomials: Related Expressions
KUS objectives BAT Evaluate expressions related to the roots of polynomials Starter: Solve π₯π₯π₯given that one root is π§=1βπ π₯π₯π₯ π₯=π₯π₯π₯=β2Β±π
3
Notes Spot the patterns I
1 πΌ + 1 π½ = πΌ+π½ πΌπ½ Rules for reciprocals 1 πΌ + 1 π½ + 1 πΎ = πΌπ½+πΌπΎ+π½πΎ πΌπ½πΎ 1 πΌ + 1 π½ + 1 πΎ + 1 πΏ = πΌπ½πΎ+πΌπ½πΏ+πΌπΎπΏ+π½πΎπΏ πΌπ½πΎπΏ Rules for powers πΌ π Γ π½ π = πΌπ½ π πΌ π Γ π½ π Γ πΎ π = πΌπ½πΎ π πΌ π Γ π½ π Γ πΎ π Γ πΏ π = πΌπ½πΎπΏ π
4
Rules for roots of polynomials used earlier in this topic
Notes Spot the patterns II Rules for roots of polynomials used earlier in this topic πΌ 2 Γ π½ 2 = πΌ+π½ 2 β2πΌπ½ πΌ 3 + π½ 3 = πΌ+π½ 3 β3πΌπ½ πΌ+π½ There are equivalent results for higher powers We can use these to find expressions for sums of squares and sums of cubes
5
π) πΌ+π½+πΎ 2 = πΌ 2 +πΌπ½+πΌπΎ+π½πΌ+ π½ 2 +π½πΎ+πΎπΌ+πΎπ½+ πΎ 2
WB D1 Sums of squares Expand πΌ+π½+πΎ 2 A cubic equation has roots πΌ, π½, πΎ such that πΌπ½+π½πΎ+πΌπΎ=7 and πΌ+π½+πΎ=β3 Find the value of πΌ 2 + π½ 2 + πΎ 2 π) πΌ+π½+πΎ 2 = πΌ 2 +πΌπ½+πΌπΎ+π½πΌ+ π½ 2 +π½πΎ+πΎπΌ+πΎπ½+ πΎ 2 πΌ+π½+πΎ 2 = πΌ 2 + π½ 2 + πΎ 2 +2 πΌπ½+π½πΎ+πΌπΎ π) π π’ππ π‘ππ‘π’π‘πππ πππ£ππ β3 2 = πΌ 2 + π½ 2 + πΎ 2 +2(7) πΌ 2 + π½ 2 + πΎ 2 =β5
6
Notes Spot the patterns III
Rules for sums of squares Quadratic πΌ 2 + π½ 2 = πΌ+π½ 2 β2 πΌπ½ Cubic πΌ 2 + π½ 2 + πΎ 2 = πΌ+π½+πΎ 2 β2 πΌπ½+π½πΎ+πΌπΎ Quartic πΌ 2 + π½ 2 + πΎ 2 + πΏ 2 = πΌ+π½+πΎ+πΏ 2 β2 πΌπ½+πΌπΎ+πΌπΏ+π½πΎ+π½πΏ+πΎπΏ Rules for sums of cubes Quadratic πΌ 3 + π½ 3 = πΌ+π½ 3 β3πΌπ½ πΌ+π½ Cubic πΌ 3 + π½ 3 + πΎ 3 = πΌ+π½+πΎ 3 β3 πΌ+π½+πΎ πΌπ½+π½πΎ+πΌπΎ +3πΌπ½πΎ
7
NOW DO Ex 4D WB D2 The three roots of a cubic equation are πΌ, π½ ,πΎ
Given that πΌπ½πΎ=4; πΌπ½+π½πΎ+πΌπΎ=β5 and πΌ+π½+πΎ=3 Find the value of (πΌ+3)(π½+3)(πΎ+3) πΌ+3 π½+3 πΎ+3 = =πΌπ½πΎ+3πΌπ½+3πΌπΎ+9πΌ+3π½πΎ+9π½+9πΎ+27 =πΌπ½πΎ+3 πΌπ½+πΌπΎ+π½πΎ +9(πΌ+π½+πΎ)+27 =4 +3 β5 +9(3)+27 = 43 NOW DO Ex 4D
8
One thing to improve is β
KUS objectives BAT Evaluate expressions related to the roots of polynomials self-assess One thing learned is β One thing to improve is β
9
END
10
WB 6 The region R is bounded by the curve π₯= 2π¦β1 , the y-axis and the vertical lines y=4 and y = 8
Find the volume of the solid formed when the region is rotated 2Ο radians about the y-axis. Give your answer as a multiple of Ο π₯= 2π¦β1 π£πππ’ππ=π π¦β ππ¦ π£πππ’ππ=π π¦β1 ππ¦ = π π¦ 2 βπ¦ 8 4 = π 64β8 βπ 16β4 =44π
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.