Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Gams Jozef Stefan Institute

Similar presentations


Presentation on theme: "M. Gams Jozef Stefan Institute"— Presentation transcript:

1 M. Gams Jozef Stefan Institute
BASIC AI METHODS M. Gams Jozef Stefan Institute

2 PURPOSE: Show how AI methods work - to con-computer specialists - with a simple, understandable example

3 THE EXAMPLE: Solution: Possibilities x 3 x 3 = 27 possibilities … no. of all particles in the universe

4 GENETIC ALGORITHMS Population evolution: breeding, selection; competition, better adapted offsprings – only the best survive Genetic code of an individual is represented by a sequence of digits, 3 seeds: 111, 222, 321 Cross-over (breeding) (2), 212(0), 221(1), 211(0), 121(2), 112(1) () 123 Mutation (each third individual, next position, +1) 222(1), 212(0), 221(1), 221(1), 121(2), 112(1)

5 GENETIC ALGORITHMS 111, 222, (1), 212(0), 221(1), 221(1), 121(2), 112(1) (2), 311(0), 321(1), 111(1), 121(2), 111(1) (0), 321(1), 322(1), 323(2), 222(1), 221(1) 3 BEST: 121(2), 122(2), 323(2) NEXT STEP: SEVERAL SOLUTIONS 123(3)

6 RULES: if high_fever then illness if fever > 37 then illness if (axilliar = yes) and (degree of diff = fairly) and (lung = no) and (sex = female) then breast (100%) Solution: if x1=1 and x2=2 in x3=3 then (3).

7 RULES: Start: candidates First step: if x1=1 then (1) if x1=2 then (0) if x1=3 then (0) Next step: if x1=1 and x2=2 then (2) if x1=2 and x2=2 then (1) Next step: if x1=1 and x2=2 and x3=3 then solution (3)

8 Idea – repeat splitting the space of all possibilities
11(1) 12(2) 13(1) 121(2) 122(2) 123(3) x1=1 2x2x3 3x2x3 1x2x3 NE DA x2=2 x3=3 123 11x3 13x3 12x3 TREES: Idea – repeat splitting the space of all possibilities

9 Output(neuron) = 1 if Σ wi xi > C
NEURAL NETWORKS: Output(neuron) = 1 if Σ wi xi > C 0 otherwise Our case: 9 connections if w1 = 1, w5 = 1 w9 = 1, Σ wi xi = 3 x1 x2 x3

10 NEURAL NETWORKS:   Learn weights wi examples in a sequence (1) (3) (0) (1) (0) (1) (2) (2) (1) (1) (1) (1) (1) (2) (0) (0) (0) (0) (1) (2)

11 CONCLUSION   - DIFFERENT AI SEARCH METHODS GENETIC/EVOLUTIONARY METHODS RULE-CONSTRUCTING MACHINE LEARNING TREE-CONSTRUCTING NEURAL NETWORKS AROUND 10 ADDITIONAL METHODS SOME DETERMINISTIC, OTHER SOFT DIFFERENT METHODS APPROPRIATE FOR DIFFERENT PROBLEMS AND TASKS - EFFECTIVE, MANY TOOLS


Download ppt "M. Gams Jozef Stefan Institute"

Similar presentations


Ads by Google