Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROGRAMMING IN HASKELL

Similar presentations


Presentation on theme: "PROGRAMMING IN HASKELL"— Presentation transcript:

1 PROGRAMMING IN HASKELL
Chapter 7 - Higher-Order Functions

2 Introduction A function is called higher-order if it takes a function as an argument or returns a function as a result. twice :: (a  a)  a  a twice f x = f (f x) twice is higher-order because it takes a function as its first argument.

3 Why Are They Useful? Common programming idioms can be encoded as functions within the language itself. Domain specific languages can be defined as collections of higher-order functions. Algebraic properties of higher-order functions can be used to reason about programs.

4 The Map Function The higher-order library function called map applies a function to every element of a list. map :: (a  b)  [a]  [b] For example: > map (+1) [1,3,5,7] [2,4,6,8]

5 The map function can be defined in a particularly simple manner using a list comprehension:
map f xs = [f x | x  xs] Alternatively, for the purposes of proofs, the map function can also be defined using recursion: map f [] = [] map f (x:xs) = f x : map f xs

6 filter :: (a  Bool)  [a]  [a]
The Filter Function The higher-order library function filter selects every element from a list that satisfies a predicate. filter :: (a  Bool)  [a]  [a] For example: > filter even [1..10] [2,4,6,8,10]

7 filter p xs = [x | x  xs, p x]
Filter can be defined using a list comprehension: filter p xs = [x | x  xs, p x] Alternatively, it can be defined using recursion: filter p [] = [] filter p (x:xs) | p x = x : filter p xs | otherwise = filter p xs

8 The Foldr Function A number of functions on lists can be defined using the following simple pattern of recursion: f [] = v f (x:xs) = x  f xs f maps the empty list to some value v, and any non-empty list to some function  applied to its head and f of its tail.

9 v = 0 v = 1 v = True For example: sum [] = 0 sum (x:xs) = x + sum xs
 = + product [] = 1 product (x:xs) = x * product xs v = 1  = * and [] = True and (x:xs) = x && and xs v = True  = &&

10 The higher-order library function foldr (fold right) encapsulates this simple pattern of recursion, with the function  and the value v as arguments. For example: sum = foldr (+) 0 product = foldr (*) 1 or = foldr (||) False and = foldr (&&) True

11 Foldr itself can be defined using recursion:
foldr :: (a  b  b)  b  [a]  b foldr f v [] = v foldr f v (x:xs) = f x (foldr f v xs) However, it is best to think of foldr non-recursively, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.

12 For example: = = = = Replace each (:) by (+) and [] by 0. sum [1,2,3]
foldr (+) 0 [1,2,3] = foldr (+) 0 (1:(2:(3:[]))) = 1+(2+(3+0)) = 6 = Replace each (:) by (+) and [] by 0.

13 For example: = = = = Replace each (:) by (*) and [] by 1.
product [1,2,3] foldr (*) 1 [1,2,3] = foldr (*) 1 (1:(2:(3:[]))) = 1*(2*(3*1)) = 6 = Replace each (:) by (*) and [] by 1.

14 Other Foldr Examples Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected. Recall the length function: length :: [a]  Int length [] = 0 length (_:xs) = 1 + length xs

15 Replace each (:) by _ n  1+n and [] by 0.
For example: length [1,2,3] length (1:(2:(3:[]))) = 1+(1+(1+0)) = 3 = Replace each (:) by _ n  1+n and [] by 0. Hence, we have: length = foldr (_ n  1+n) 0

16 Replace each (:) by x xs  xs ++ [x] and [] by [].
Now recall the reverse function: reverse [] = [] reverse (x:xs) = reverse xs ++ [x] For example: Replace each (:) by x xs  xs ++ [x] and [] by []. reverse [1,2,3] reverse (1:(2:(3:[]))) = (([] ++ [3]) ++ [2]) ++ [1] = [3,2,1] =

17 Replace each (:) by (:) and [] by ys.
Hence, we have: reverse = foldr (x xs  xs ++ [x]) [] Finally, we note that the append function (++) has a particularly compact definition using foldr: Replace each (:) by (:) and [] by ys. (++ ys) = foldr (:) ys

18 Why Is Foldr Useful? Some recursive functions on lists, such as sum, are simpler to define using foldr. Properties of functions defined using foldr can be proved using algebraic properties of foldr, such as fusion and the banana split rule. Advanced program optimisations can be simpler if foldr is used in place of explicit recursion.

19 Other Library Functions
The library function (.) returns the composition of two functions as a single function. (.) :: (b  c)  (a  b)  (a  c) f . g = x  f (g x) For example: odd :: Int  Bool odd = not . even

20 The library function all decides if every element of a list satisfies a given predicate.
all :: (a  Bool)  [a]  Bool all p xs = and [p x | x  xs] For example: > all even [2,4,6,8,10] True

21 Dually, the library function any decides if at least
one element of a list satisfies a predicate. any :: (a  Bool)  [a]  Bool any p xs = or [p x | x  xs] For example: > any isSpace "abc def" True

22 The library function takeWhile selects elements from a list while a predicate holds of all the elements. takeWhile :: (a  Bool)  [a]  [a] takeWhile p [] = [] takeWhile p (x:xs) | p x = x : takeWhile p xs | otherwise = [] For example: > takeWhile isAlpha "abc def" "abc"

23 Dually, the function dropWhile removes elements while a predicate holds of all the elements.
dropWhile :: (a  Bool)  [a]  [a] dropWhile p [] = [] dropWhile p (x:xs) | p x = dropWhile p xs | otherwise = x:xs For example: > dropWhile isSpace " abc" "abc"

24 Exercises (1) What are higher-order functions that return functions as results better known as? (2) Express the comprehension [f x | x  xs, p x] using the functions map and filter. (3) Redefine map f and filter p using foldr.


Download ppt "PROGRAMMING IN HASKELL"

Similar presentations


Ads by Google