Download presentation
Presentation is loading. Please wait.
2
Trigonometry
3
More Trig
4
Triangles
5
Conic Sections
6
Systems of Equations
7
Sequences
8
Conic Sections Systems of Equations Trigonometry More Trig Triangles Sequences $100 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 $500
9
Evaluate. cos β1 (sin ππ
π )
10
π
π
11
Given sin π½ =π, express cos π½ as a function of π.
12
cos π½ =Β± πβ π π
13
Given csc π½ = π π , and π
π <π½<π
, find tan π½ π
14
tan π½ π =π (Talk about bounds!)
15
Prove identity of cos π½ cos π½β sin π½ = π πβ tan π½
16
π πβ tan π½ = π πβ sin π½ cos π½ = cos π½ cos π½β sin π½
17
Simplify until one of the following: sin π½ , cos π½ , tan π½, π πβ πππ π π½ π+ππππ½
18
πβ πππ π π½ π+ππππ½ = π+ππππ½β πππ π π½ π+ππππ½ = ππππ½+ πππ π π½ π+ππππ½ = ππππ½(π+ππππ½) π+ππππ½) =ππππ½
19
Range of the function, π π = cos βπ π
20
π, π
π
21
If sin π½= π π , then cos ππ½ =
22
Β± π ππ *We need to know what quadrant π½ is in to be able to find sin ππ½
23
Explain why cos βπ¨ = cos π¨
24
Think of Unit Circle! Both angles A and βA are on the same side of the y-axis, so the x-value (cosine) remains the exact same!
25
Find amplitude, period, and phase shift of the sine wave.
26
Amplitude = 7, Period = 6, Phase Shift = π π
27
Write equation for the cosine graph below.
28
π= π π cos π₯ 3 β π 4 +2
29
Evaluate. cos ππΒ° sin ππΒ° + sin ππΒ° cos ππΒ°
30
1
31
Use a right triangle ABC, to explain why sin π¨ = cos π© .
32
*This is why sine and cosine are considered cofunctions!
33
Using the formula π¨= π π ππ, find the area of the triangle .
34
ππ sin ππΒ° sin ππΒ° π sin ππΒ°
35
Solve the triangle below.
36
πͺ=πππΒ°βππΒ°βππΒ° π= π sin ππΒ° sin πͺ π= π sin ππΒ° sin πͺ
37
Solve the triangle below.
38
π©= sin βπ ( π sin ππΒ° π ) π¨=πππΒ°βππΒ°βπ© π= π sin π¨ sin ππΒ°
π©= sin βπ ( π sin ππΒ° π ) π¨=πππΒ°βππΒ°βπ© π= π sin π¨ sin ππΒ° *Need to find 2nd triangle if πππΒ°βπ©+ππΒ°<πππΒ°. (Same steps for finding A and a, but now new B is πππΒ°βfirst B.)
39
Find the center and radius of the circle: π π βππ+ π π +ππ=π
40
Center is at (π, βπ); Radius is 3
41
Find the vertices of the ellipse: π π +ππ+π π π βπππ=βπ
42
(-6, 1) and (0, 1)
43
Write an equation for the ellipse:
44
(π+π) π + (π+π ) π π =π
45
Write an equation for the parabola:
46
(πβπ) π =β(πβπ)
47
Find the coordinates of the vertex of the parabola: π=π π π +ππ+c
48
(β π ππ , πβ π π ππ )
49
Solve the system below: ππβπ=βπ π+ π π π= π π
50
( π π ,π)
51
Solve the system below: ππ+ππ= π π ππβππ=βππ
52
(β π π ,π)
53
Solve the system below: π= π π βπ π=ππβππ
54
(3, 5)
55
Solve the system below: π=ππ+π π π π + π π =π
56
π,π and (β π π ,β π π )
57
Solve the system for x. ππ+ππ=π ππ+π
π=π
58
π= ππβππ
ππβππ
59
Express the sum using summation notation: π π β π π + π ππ β β¦+ βπ ππ ( π π )
60
π=π ππ (βπ ) π+π ( π π ) π
61
Find the first term and common difference of an arithmetic sequence if the 4th term is 3 and the 20th term is 35.
62
First Term = -3 Common Difference = 2
63
Find the sum: πΊ=ππ+ππ+ππ+ β¦+πππ
64
6,601
65
Find the sum: πΊ=π+π+ π π + π π +β¦
66
π π
67
Find the sum: π=π ππ ππβπ
68
871
69
Final Jeopardy!!
70
Trig Identity Proofs
71
Simplify the equation ( cos π¨ β cos π© ) π +( sin π¨ β sin π© ) π =( cos π¨βπ© βπ ) π +( sin (π¨βπ©) ) π to get one of the familiar sum or difference formulas!
72
( cos π¨ β cos π© ) π +( sin π¨ β sin π© ) π =( cos π¨βπ© βπ ) π +( sin (π¨βπ©) ) π will simplify to cos π¨ cos π© + sin π¨ sin π© = cos (π¨βπ©)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.