Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trigonometry. Trigonometry More Trig Triangles.

Similar presentations


Presentation on theme: "Trigonometry. Trigonometry More Trig Triangles."β€” Presentation transcript:

1

2 Trigonometry

3 More Trig

4 Triangles

5 Conic Sections

6 Systems of Equations

7 Sequences

8 Conic Sections Systems of Equations Trigonometry More Trig Triangles Sequences $100 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 $500

9 Evaluate. cos βˆ’1 (sin πŸ“π… πŸ” )

10 𝝅 πŸ‘

11 Given sin 𝜽 =𝒙, express cos 𝜽 as a function of 𝒙.

12 cos 𝜽 =Β± πŸβˆ’ 𝒙 𝟐

13 Given csc 𝜽 = πŸ“ πŸ’ , and 𝝅 𝟐 <𝜽<𝝅, find tan 𝜽 𝟐

14 tan 𝜽 𝟐 =𝟐 (Talk about bounds!)

15 Prove identity of cos 𝜽 cos πœ½βˆ’ sin 𝜽 = 𝟏 πŸβˆ’ tan 𝜽

16 𝟏 πŸβˆ’ tan 𝜽 = 𝟏 πŸβˆ’ sin 𝜽 cos 𝜽 = cos 𝜽 cos πœ½βˆ’ sin 𝜽

17 Simplify until one of the following: sin 𝜽 , cos 𝜽 , tan 𝜽, 𝟏 πŸβˆ’ 𝒄𝒐𝒔 𝟐 𝜽 𝟏+π’”π’Šπ’πœ½

18 πŸβˆ’ 𝒄𝒐𝒔 𝟐 𝜽 𝟏+π’”π’Šπ’πœ½ = 𝟏+π’”π’Šπ’πœ½βˆ’ 𝒄𝒐𝒔 𝟐 𝜽 𝟏+π’”π’Šπ’πœ½ = π’”π’Šπ’πœ½+ π’”π’Šπ’ 𝟐 𝜽 𝟏+π’”π’Šπ’πœ½ = π’”π’Šπ’πœ½(𝟏+π’”π’Šπ’πœ½) 𝟏+π’”π’Šπ’πœ½) =π’”π’Šπ’πœ½

19 Range of the function, 𝒇 𝒙 = cos βˆ’πŸ 𝒙

20 𝟎, 𝝅 𝟐

21 If sin 𝜽= πŸ“ πŸ– , then cos 𝟐𝜽 =

22 Β± πŸ• πŸ‘πŸ *We need to know what quadrant 𝜽 is in to be able to find sin 𝟐𝜽

23 Explain why cos βˆ’π‘¨ = cos 𝑨

24 Think of Unit Circle! Both angles A and –A are on the same side of the y-axis, so the x-value (cosine) remains the exact same!

25 Find amplitude, period, and phase shift of the sine wave.

26 Amplitude = 7, Period = 6, Phase Shift = πŸ’ 𝝅

27 Write equation for the cosine graph below.

28 π’š= 𝟏 𝟐 cos π‘₯ 3 βˆ’ πœ‹ 4 +2

29 Evaluate. cos πŸ‘πŸ“Β° sin πŸ“πŸ“Β° + sin πŸ‘πŸ“Β° cos πŸ“πŸ“Β°

30 1

31 Use a right triangle ABC, to explain why sin 𝑨 = cos 𝑩 .

32 *This is why sine and cosine are considered cofunctions!

33 Using the formula 𝑨= 𝟏 𝟐 𝒃𝒉, find the area of the triangle .

34 πŸπŸ“ sin πŸ–πŸ•Β° sin πŸ’πŸ‘Β° 𝟐 sin πŸ“πŸŽΒ°

35 Solve the triangle below.

36 π‘ͺ=πŸπŸ–πŸŽΒ°βˆ’πŸ’πŸŽΒ°βˆ’πŸ’πŸ“Β° 𝒃= πŸ’ sin πŸ’πŸ“Β° sin π‘ͺ 𝒂= πŸ’ sin πŸ’πŸŽΒ° sin π‘ͺ

37 Solve the triangle below.

38 𝑩= sin βˆ’πŸ ( πŸ‘ sin πŸ’πŸŽΒ° πŸ’ ) 𝑨=πŸπŸ–πŸŽΒ°βˆ’πŸ’πŸŽΒ°βˆ’π‘© 𝒂= πŸ’ sin 𝑨 sin πŸ’πŸŽΒ°
𝑩= sin βˆ’πŸ ( πŸ‘ sin πŸ’πŸŽΒ° πŸ’ ) 𝑨=πŸπŸ–πŸŽΒ°βˆ’πŸ’πŸŽΒ°βˆ’π‘© 𝒂= πŸ’ sin 𝑨 sin πŸ’πŸŽΒ° *Need to find 2nd triangle if πŸπŸ–πŸŽΒ°βˆ’π‘©+πŸ’πŸŽΒ°<πŸπŸ–πŸŽΒ°. (Same steps for finding A and a, but now new B is πŸπŸ–πŸŽΒ°βˆ’first B.)

39 Find the center and radius of the circle: 𝒙 𝟐 βˆ’πŸπ’™+ π’š 𝟐 +πŸ’π’š=πŸ’

40 Center is at (𝟏, βˆ’πŸ); Radius is 3

41 Find the vertices of the ellipse: 𝒙 𝟐 +πŸ”π’™+πŸ— π’š 𝟐 βˆ’πŸπŸ–π’š=βˆ’πŸ—

42 (-6, 1) and (0, 1)

43 Write an equation for the ellipse:

44 (𝒙+𝟏) 𝟐 + (π’š+𝟏 ) 𝟐 πŸ’ =𝟏

45 Write an equation for the parabola:

46 (π’šβˆ’πŸ) 𝟐 =βˆ’(π’™βˆ’πŸ)

47 Find the coordinates of the vertex of the parabola: π’š=𝒂 𝒙 𝟐 +𝒃𝒙+c

48 (βˆ’ 𝒃 πŸπ’‚ , π’„βˆ’ 𝒃 𝟐 πŸ’π’‚ )

49 Solve the system below: πŸπ’™βˆ’π’š=βˆ’πŸ 𝒙+ 𝟏 𝟐 π’š= πŸ‘ 𝟐

50 ( 𝟏 𝟐 ,𝟐)

51 Solve the system below: πŸπ’™+πŸ’π’š= 𝟐 πŸ‘ πŸ‘π’™βˆ’πŸ“π’š=βˆ’πŸπŸŽ

52 (βˆ’ πŸ“ πŸ‘ ,𝟏)

53 Solve the system below: π’š= 𝒙 𝟐 βˆ’πŸ’ π’š=πŸ”π’™βˆ’πŸπŸ‘

54 (3, 5)

55 Solve the system below: π’š=πŸπ’™+𝟏 𝟐 𝒙 𝟐 + π’š 𝟐 =𝟏

56 𝟎,𝟏 and (βˆ’ 𝟐 πŸ‘ ,βˆ’ 𝟏 πŸ‘ )

57 Solve the system for x. 𝒂𝒙+π’ƒπ’š=𝒑 𝒄𝒙+π’…π’š=𝒒

58 𝒙= π’’π’ƒβˆ’π’‘π’… π’ƒπ’„βˆ’π’‚π’…

59 Express the sum using summation notation: 𝟐 πŸ‘ βˆ’ πŸ’ πŸ— + πŸ– πŸπŸ• βˆ’ …+ βˆ’πŸ 𝟏𝟐 ( 𝟐 πŸ‘ )

60 π’Œ=𝟏 𝟏𝟏 (βˆ’πŸ ) π’Œ+𝟏 ( 𝟐 πŸ‘ ) π’Œ

61 Find the first term and common difference of an arithmetic sequence if the 4th term is 3 and the 20th term is 35.

62 First Term = -3 Common Difference = 2

63 Find the sum: 𝑺=𝟐𝟏+πŸπŸ–+πŸ‘πŸ“+ …+πŸ‘πŸŽπŸ

64 6,601

65 Find the sum: 𝑺=πŸ‘+𝟏+ 𝟏 πŸ‘ + 𝟏 πŸ— +…

66 πŸ— 𝟐

67 Find the sum: π’Œ=𝟏 πŸπŸ” πŸ‘π’Œβˆ’πŸ•

68 871

69 Final Jeopardy!!

70 Trig Identity Proofs

71 Simplify the equation ( cos 𝑨 βˆ’ cos 𝑩 ) 𝟐 +( sin 𝑨 βˆ’ sin 𝑩 ) 𝟐 =( cos π‘¨βˆ’π‘© βˆ’πŸ ) 𝟐 +( sin (π‘¨βˆ’π‘©) ) 𝟐 to get one of the familiar sum or difference formulas!

72 ( cos 𝑨 βˆ’ cos 𝑩 ) 𝟐 +( sin 𝑨 βˆ’ sin 𝑩 ) 𝟐 =( cos π‘¨βˆ’π‘© βˆ’πŸ ) 𝟐 +( sin (π‘¨βˆ’π‘©) ) 𝟐 will simplify to cos 𝑨 cos 𝑩 + sin 𝑨 sin 𝑩 = cos (π‘¨βˆ’π‘©)


Download ppt "Trigonometry. Trigonometry More Trig Triangles."

Similar presentations


Ads by Google