Download presentation
Presentation is loading. Please wait.
Published byGervais Sherman Modified over 5 years ago
1
Lecture #18 OUTLINE Reading Continue small signal analysis
Logic functions NMOS logic gates The CMOS inverter Reading Rabaey et al.: Chapter 5.2 Hambley: Chapter
2
Digital Signals For a digital signal, the voltage must be within one of two ranges in order to be defined: Positive Logic: “low” voltage logic state 0 “high” voltage logic state 1 VDD VOH “1” VIH increasing voltage undefined region VIL “0” VOL 0 Volts
3
Logic Functions, Symbols, & Notation
TRUTH NAME SYMBOL NOTATION TABLE A F 1 “NOT” A F F = A A B F 1 A “OR” F F = A+B B A B F 1 A “AND” F F = A•B B
4
A “NOR” F F = A+B B A “NAND” F F = A•B B A “XOR” F F = A + B B A B F 1
1 A “NOR” F F = A+B B A B F 1 A “NAND” F F = A•B B A B F 1 A “XOR” (exclusive OR) F F = A + B B
5
NMOS Inverter (“NOT” Gate)
Circuit: Voltage-Transfer Characteristic vOUT VDD F A iD vIN = VDD increasing vGS = vIN > VT vIN VT VDD VDD/RD VDD A F 1 vDS vGS = vin VT
6
Noise Margins Noise margin high Noise margin low
Definition of Input Levels Definition of Noise Margins logic swing Vsw VOL VOH Noise margin high Noise margin low
7
Output is low only if both inputs are high
NMOS NAND Gate Output is low only if both inputs are high VDD RD F A Truth Table A B F 1 B
8
Output is low if either input is high
NMOS NOR Gate Output is low if either input is high VDD RD F A B Truth Table A B F 1
9
Disadvantages of NMOS Logic Gates
Large values of RD are required in order to achieve a low value of VOL keep power consumption low Large resistors are needed, but these take up a lot of space. One solution is to replace the resistor with an NMOSFET that is always on.
10
The CMOS Inverter: Intuitive Perspective
CIRCUIT SWITCH MODELS VDD VIN VOUT S D G VDD VDD Rp VOUT VOUT VOL = 0 V VOH = VDD Rn Low static power consumption, since one MOSFET is always off in steady state VIN = VDD VIN = 0 V
11
CMOS Inverter Voltage Transfer Characteristic
N: sat P: sat VOUT N: off P: lin C VDD N: sat P: lin A B D E N: lin P: sat N: lin P: off VIN VDD
12
CMOS Inverter Load-Line Analysis
VGSp=VIN-VDD – + VIN = VDD + VGSp – VDSp=VOUT-VDD + VOUT = VDD + VDSp IDn=-IDp increasing VIN VIN = 0 V VIN = VDD IDn=-IDp increasing VIN VOUT=VDSn VDD VDSp = 0 VDSp = - VDD
13
CMOS Inverter Load-Line Analysis: Region A
VGSp=VIN-VDD – + VIN VTn – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VOUT=VDSn VDD
14
CMOS Inverter Load-Line Analysis: Region B
VGSp=VIN-VDD – + VDD/2 > VIN > VTn – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VOUT=VDSn VDD
15
CMOS Inverter Load-Line Analysis: Region D
VGSp=VIN-VDD – + VDD – |VTp| > VIN > VDD/2 – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VOUT=VDSn VDD
16
CMOS Inverter Load-Line Analysis: Region E
VGSp=VIN-VDD – + VIN > VDD – |VTp| – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VOUT=VDSn VDD
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.